MAIZE for Silage
Hybrid Performance and Positioning Information

CENTRAL HAWKE’S BAY, LOWER NORTH ISLAND, TARANAKI & SOUTH ISLAND

2014
Hybrid Options for Your Region

Region 3
South Waikato / King Country / Coastal Taranaki / Mangawhai / Southern Wairarapa / Central Hawke's Bay

Region 4
Rotorua / Reporoa / Taupo / Central Taranaki / Southern Hawke's Bay / Horowhenua

Region 5
Nelson / Marlborough
North & Mid Canterbury

Region 6
South Canterbury / West Coast

Region 7
North Otago / Southland

Hybrid maturity is based on heat unit accumulation through the season. Hybrids will therefore be quicker to harvest in warmer regions or warmer seasons. For example, a hybrid planted in coastal Bay of Plenty will be ready for harvesting much earlier than the same hybrid planted on the same day in Central Taranaki due to the faster accumulation of heat units in the Bay of Plenty environment. This has important implications for hybrid selection.

The table above is a guide as to the estimated days from planting to harvest for Pioneer® brand hybrids in the regions for which they are recommended for silage. This information is generated from silage hybrid trials carried out in these regions over several seasons.

Notes
Hybrid maturity is based on heat unit accumulation through the season. Hybrids will therefore be quicker to harvest in warmer regions or warmer seasons. For example, a hybrid planted in coastal Bay of Plenty will be ready for harvesting much earlier than the same hybrid planted on the same day in Central Taranaki due to the faster accumulation of heat units in the Bay of Plenty environment. This has important implications for hybrid selection. The table above is a guide as to the estimated days from planting to harvest for Pioneer® brand hybrids in the regions for which they are recommended for silage. This information is generated from silage hybrid trials carried out in these regions over several seasons.
Pioneer® Brand Maize for Silage Hybrid Trait Characteristics

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Yield Plant traits</th>
<th>Silage quality traits</th>
<th>Hybrid disease ratings</th>
<th>Recommended established plant populations (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39V43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7524</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39G12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39T45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39F58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P805</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39V12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38H20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9401</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38P05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37Y12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9721</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9911</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36M28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35A30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0791</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34P88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1253</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33G26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33M54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1636</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31G66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pioneer® brand Elite Hybrids

The Elite Hybrid range includes the latest, industry leading hybrids most recently commercialised from the New Zealand Research Programme.

The Elite Hybrid range offers farmers top yields of high quality silage. Incorporating Pioneer’s latest germplasm, these products are dominating New Zealand trials.

Pioneer® brand Proven Hybrids

The Proven Hybrid range includes hybrids that have been trusted and delivered peace-of-mind to farmers over a number of seasons.

Proven Hybrids offer solid performance at a competitive price. They may not yield more than Pioneer Elite Hybrids, but they won’t let you down.

RATINGS: 9 = Outstanding 1 = Poor - = Insufficient data available NEW = New hybrid NR = Not recommended = Elite Hybrid = Proven Hybrid
Trait characteristics notes:

1 **Silage comparative relative maturity (CRM):**
 Pioneer silage CRM ratings provide a comparison between Pioneer hybrids indicating the relative rates at which hybrids reach harvestable whole plant drymatter. They do **not** represent actual calendar days from planting to harvest.

2 **Yield for maturity:**
 Hybrid comparisons should only be made within a range of + or – 4 CRM. Analysis of differences in harvest drymatter percentages between hybrids measured in our New Zealand forage research programme show products compared within + or – 4 CRM will reach ideal silage harvest maturity (defined as 32% - 38% DM) within about seven days of each other.

3 **Adaptability to high population:**
 A measure of the mix of genetic factors that permit a maize plant to withstand the stresses of high population and still give good standability and high yields.

4 **Adaptability to low population:**
 An indicator of a hybrid’s ability to compensate (flex) cob size for stand loss from insect damage or poor emergence.

5 **Early growth:**
 Ratings are taken when two leaf collars are visible.

6 **Plant height:**
 9 = Tall. 1 = Short.

7 **Staygreen:**
 A measure of late season plant health. A lower score also means that the plant stover loses colour and dries down more rapidly at maturity.

8 **Whole plant digestibility:**
 Based on estimated 24 hour in vitro, whole plant digestibility percentage (DM basis) as predicted by Near Infrared Reflectance Spectroscopy (NIRS).

9 **Fibre digestibility:**
 Based on 24 hour enzymatic estimate of the proportion of degradable neutral detergent fibre (NDF) as a percentage of the total NDF in whole plant sample, predicted by NIRS.

10 **Silage crude protein:**
 Based on the amount of crude protein in the whole plant, predicted by NIRS.

11 **Readily available energy (RAE):**
 Based on total starch, sugar and oil content of hybrids harvested at silage maturity. Use this score as a relative comparison of the whole plant concentration of more readily available energy (primarily grain) among individual hybrids.

12 **Northern Leaf Blight (NLB) and Eyespot:**
 Caution: In conditions where NLB and Eyespot risks are high, growers should only consider planting hybrids with at least moderate resistance ratings of 5 or higher for these diseases.

13 **Hybrid disease resistance ratings:**
 8 to 9 = Highly resistant. 6 to 7 = Resistant. 4 to 5 = Moderately resistant. 1 to 3 = Susceptible. - = Insufficient data.
 Common Rust ratings are mostly based on United States and European data as the New Zealand database is usually too small to give a statistically valid rating. Eyespot and NLB ratings are based on overseas data together with New Zealand observations. Scores are based on visual assessment only and not on yield reduction data.

14 **Cool environments:**
 In cool environments, including high altitude sites greater than approximately 150 m / 500 ft above sea level, select your yield environment using the descriptions in note 17, then increase established plant populations to the next level i.e. for P0791 in a medium yield environment at high altitude, plant to achieve 108,000 established plants per hectare.

15 **Established plant populations:**
 These assume good seed establishment conditions. If you are planting very early or into a less than ideal seedbed or where insect pressure may be high (e.g. a shorter than optimum fallow period), plant populations may need to be increased to compensate for reduced establishment due to field losses.

16 **Plant populations:**
 The tabulated established populations are recommendations only. Work with your local Pioneer Representative or Merchant Seed Representative to determine the appropriate plant populations for your specific growing environment.

17 **Growing environment definitions:**
 May include some or all of the following characteristics:

 Challenging yield environments (CYE)
 - Typically light, sandy or shallow soils of low fertility, low moisture retention, and predictably low summer rainfall (drought-prone environments).
 - High cob or leaf disease pressure.

 Medium yield environments (MYE)
 - Average fertility soils with predictably adequate summer rainfall and good moisture retention.
 - Continuously cropped soils.
 - Medium to low cob or leaf disease pressure.
 - Recommended for new maize growers.

 High yield environments (HYE)
 - Typically deeper, highly fertile and well structured soils with good moisture retention.
 - Predictably good summer rainfall, shelter from high wind run.
 - Good soils straight out of long term pasture.
 - Low or no cob or leaf disease pressure.
New hybrids introduced for spring 2015 3
IMPACT™ and PATs effectively test and deliver new commercial hybrids 4
Trial results, side-by-side comparisons and statistical significance 7
Selecting the best hybrid – trial numbers are important 9
Regression analysis 11
Milk profit calculations 12

LOWER NORTH ISLAND & TARANAKI PAIRED SILAGE COMPARISONS
Comparison index Lower North Island & Taranaki 14

Pioneer Research Stations results
Normanby 66
New Plymouth 67

Individual Farmer trial results
Amon, Chris 68
Bolton, Ross 68
Bourke, Eddie 68
Bunn, Karl 68
Butler, Alan 68
Chapman Onion Exports Ltd 68
Christie, Dallis 69
Dalrymple, Hew 69
Dowdle, Paul 69
Dravitzki, Karl 69
Dunrobin Farms (Phil Gray) 69
Funnell, Kristan 70
Geary, Alistair 70
Goodin, Tom & Lyn 70
Gwynn, David 70
Haigh, Doug 70
Handyside, Rupert 70
Hanser, Brian 71
Judd, Walter 71
Jury, David 71
Kershaw, Richard 71
Kissick, Bede 71
Knowles, Chris & Stevens, Amy 71
Landcorp Farming Ltd (Horowhenua) 72
Lynskey, Craig & Kim 72
Malcolm, David 72
Miles, Shane (PKW Incorporation) 72
Moffitt, Ross & Gloria 72
Murdock, Alistair 72
Patrick, Bruce 73
Penwarden, Tony 73
Poole, Rob & Clare 73
Powell, Martin 73
Quinn, John 73
Sims, Robert 73
Spiers, Ian 73
Sutherland, Toby 74
Taylor, Aaron 74
Thompson, Chris 74
Train, Michael 74
Trotter, Sam 74
Tucker, Bryan 75
Wall, Matthew 75
Washer, Greg 75
Weir, John 75
Williamson, Ian 75

SOUTH ISLAND PAIRED SILAGE COMPARISONS
Comparison index South Island 78

Pioneer Research Stations results
Ashburton 95

Individual Farmer trial results
Adams, David 96
Brosnahan, Phillip & Stephen 96
Carey, Mark 96
Chapman, John 96
Dobbs, Lionel 96
Five Star Beef 97
Fleming, Martin 97
Flintoff, Peter 97
Kingsbury, Peter 97
Leadley, Paul 98
Majer, Harry 98
McFadden, Alistair 98
McKendry, Phil 98
Molloy, Lynton 98
Morrison, Nigel 98
Van Leeuwin, Aad 99
Wai-iti Fresh (Peter McCracken) 99
Yeatsman Farms 99

Thank you to the 2013/2014 Trial Co-operators 101
For more than 80 years Pioneer breeders have improved the agronomy, disease resistance and yield of commercially available maize hybrids. The annual rate of silage yield gain in New Zealand is estimated to have been over 300 kilograms of drymatter per hectare per year over the last 50 years (from Pioneer research and published crop yield data). As a result, a newly introduced Pioneer hybrid will have a considerable yield advantage over older hybrids.

To maximise their returns, silage growers should look to introduce new hybrids that are best suited to their farm system on a regular basis. Desired harvest timing, soil type, cultivation methods, agronomic traits such as early growth, drought tolerance, stalk and root strength, disease resistances and silage quality traits are all important considerations in the hybrid selection process.

The most reliable way to select superior hybrids is to consider yield and quality performance information, gathered over several seasons and over a wide range of locations within a growing region. Individual on-farm trial results should not be used to select a hybrid because they are not a reliable predictor of hybrid performance in future seasons. A useful rule of thumb is that at least 20 locations of data are required to provide adequate comparative yield performance information. This data should then be statistically analysed to establish the quality of the data and if there are any real differences between hybrids being compared.

This publication provides a summary of the investment made to evaluate the silage yield performance of Pioneer® brand products and other brands of silage hybrids in defined growing regions in New Zealand.

For spring 2015 a number of new silage hybrids will be introduced for the first time:

- **P7524**: Intermediate in maturity between 39V43 and 39G12. An exciting new option for growers in cooler high latitude or high altitude growing environments.

- **P8805**: Intermediate in maturity between 39T45 and 38V12. A top yielding hybrid for silage and grain that has excellent all round agronomics and a balanced disease profile.

- **P9721**: Similar to 37Y12 but delivers higher silage yield. A great all-round balanced package of agronomic traits with wide adaptability.

- **P9911**: A key maturity option in the Optimum AQUAmax® range delivering great drought tolerance. An impressive all-round hybrid with top agronomics and a sound disease package. Combines the best of bulk and energy for maximum milk productivity.

- **P1636**: Combines impressive agronomics, drought tolerance and provides a wide harvest window. Similar in type and maturity to 33M54 and is particularly adapted to Northland and Bay of Plenty.

All have been extensively tested and offer performance advantages over more established hybrids.

We recommend this publication be used in conjunction with the Pioneer® brand Maize for Silage 2014/2015 catalogue and the expertise provided by Pioneer as well as your local Merchant Representatives.
No two seasons are quite the same. The 2013-14 season was however, similar to 2012-13 in much of Northland and Waikato with good early growing conditions but became hot and dry over the January to March period. Once again in these regions the harvest was significantly earlier and quicker than “average”. In the Bay of Plenty, Gisborne, Hawke’s Bay, Lower North Island and Taranaki, growing conditions were generally good although tended to be dry towards harvest. In the South Island the silage crops grew well but could have benefited from more heat during the heart of the growing season.

The trial yield results reported in this publication range from poor to exceptional. The exceptional crops often trace back to optimum planting dates into paddocks of good water holding capacity and with the application of the best agronomic practices, overlaid with sufficient rain and heat to grow the crop.

IMPACT™ AND PAT’S EFFECTIVELY TEST AND DELIVER NEW COMMERCIAL HYBRIDS

Pioneer® brand products’ ongoing commitment to sourcing and effective testing of hybrids in New Zealand provides growers with the opportunity to maximise maize silage yield and quality. The IMPACT™ trials (Intensively Managed Product Advancement, Characterisation and Training trials) together with the PAT (Product Advancement Trials) testing programme marks a unique team effort between research, sales, growers and contractors.

IMPACT™, or replicated small plot trials, provide local testing of up to 100 hybrids. The best experimental hybrids are advanced to strip or PAT trials for further and more extensive testing the next season. The silage PAT’s only evaluate 6 to 8 hybrids at a time but are over a wider geographic spread in growing regions where the new hybrid is expected to have a performance advantage over existing commercial hybrids.

The IMPACT™ programme is an advanced method for evaluating maize hybrids in replicated research plots. These trials are planted using specialised pneumatic 4-row research plot planters with GPS guidance for increased accuracy and precision in a range of environments with different soil types, weather and disease pressures. As the name implies, they benefit from intensive management, close observation and evaluation throughout the growing season. At the end of the growing season specialist forage harvesters measure hybrid yield as the plots are being harvested.

The geographical spread of IMPACT™ trials is enabled by the availability of equipment transporters facilitating these trials at locations from Northland, through the Waikato, to the Lower North Island last season.

Together, these trials funnel more local information into the product commercialisation decision making process. It allows Pioneer® brand products to bring proven, industry-leading maize genetics to the New Zealand market and to understand which products offer the best performance in each growing region. As a result, specific customer needs can be more readily targeted and in doing so, the grower will experience the benefit of our “Right Product, Right Paddock” strategy.

The aim of the trial programme is to identify the best maize hybrids for New Zealand growing conditions. We achieve this through the combination of comprehensive field observation, as well as rigorous data evaluation and statistical analysis of the results generated, as shown in the flow chart below.
Pioneer Hi-Bred International Global Breeding Programme
Thousands of new hybrids evaluated each year.

New Zealand Maize Silage Hybrid Evaluation Programme

IMPACT trials test up to 100 experimental and commercial hybrids. The best new hybrids are advanced for PAT testing in the next season.

PAT trials evaluate the best new hybrids grown side-by-side with existing commercial hybrids in on-farm trials.

Side-by-side trial data collected from at least 20 locations, over several seasons, within a growing region is pooled to create an average yield result for the two hybrids.

A t-test analysis is used to calculate the statistical significance of the measured pooled side-by-side yield result. Statistical significance is indicated by significance stars.

New Zealand Maize Silage Grower
25 tried and tested high yielding maize silage hybrids available to local growers in spring 2014.
Growing regions used for data summary and hybrid performance reporting:

1. Northland & South Auckland
2. Waikato
3. Bay of Plenty, Gisborne & Northern Hawke’s Bay
4. Lower North Island & Taranaki
5. South Island
TRIAL RESULTS, SIDE-BY-SIDE COMPARISONS AND STATISTICAL SIGNIFICANCE

TRIAL RESULTS

In order to ensure accuracy in field-weighing and silage drymatter determination, the Pioneer Field Technicians follow ISO 9001:2008 approved best practice procedures.

All farmer trial co-operators receive a copy of their individual results. This information represents the outcome of comparing hybrids included in that one environment, in that particular season and under the management practice employed by the grower.

The results of IMPACT™ trials have not been published, as most hybrids are only experimental they will not be tested again and as a result are not of direct interest to the maize growing community.

When using trial results, it is essential that the overall performance of a hybrid over several seasons and sites in your growing region is considered, as this is more likely to be a robust and stable indicator of future performance in your paddock.

SIDE-BY-SIDE COMPARISONS AND STATISTICAL SIGNIFICANCE

In a side-by-side comparison, Hybrid A and Hybrid B are planted side-by-side in the same paddock according to strict scientific protocols. At harvest, crop yield, drymatter and nutritional characteristics are measured. This allows the performance of the two hybrids to be compared under the same growing conditions. Side-by-side trial data collected from a number of locations over several seasons within defined growing regions is pooled to create an average side-by-side yield result for the two hybrids.

A statistical analysis (called a t-test) is used to calculate the statistical significance of the measured, pooled, side-by-side yield result. This may sound complicated but statistical significance, indicated by significance stars (★ ★ ★), simply shows how likely the measured average of the side-by-side yield difference is, due to an actual genetic yield difference between the two hybrids, rather than just chance. In other words we are essentially asking:

“Based on the data, are these two products the same or different for yield?”
INTERPRETATION OF THE T-TEST STARS (★) FOR HYBRID SIDE-BY-SIDE YIELD COMPARISONS

The table below presents a summary of the possible t-test outcomes.

<table>
<thead>
<tr>
<th>P VALUE</th>
<th>CONFIDENCE LEVEL</th>
<th>SCIENTIFIC DESIGNATION</th>
<th>LEVEL OF SIGNIFICANCE</th>
<th>YIELD ADVANTAGE</th>
<th>INTERPRETATION</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.001</td>
<td>>99.9%</td>
<td>★★★</td>
<td>Very highly significant</td>
<td>YES</td>
<td>Product superiority for yield can be claimed. Can confidently plant a product providing no key agronomic traits are limiting, and/or if a key trait advantage exists. Check the trait ratings for any considerations.</td>
</tr>
<tr>
<td><0.01</td>
<td>>99.0%</td>
<td>★★</td>
<td>Highly significant</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td><0.05</td>
<td>>95.0%</td>
<td>★</td>
<td>Significant</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td><0.10</td>
<td>>90.0%</td>
<td>CA</td>
<td>Commercially Acceptable</td>
<td>YES</td>
<td>Not a significant result, but may be regarded as commercially acceptable from which to base a decision.</td>
</tr>
<tr>
<td>>0.10</td>
<td><90.0%</td>
<td></td>
<td>Not significant</td>
<td>NO</td>
<td>Product superiority for yield cannot be claimed. Ignore the yield comparison and refer primarily to trait ratings to select between the products.</td>
</tr>
</tbody>
</table>

The more stars (★) present for the comparison, the more confident we can be that the measured average side-by-side yield difference is due to an actual genetic yield difference between the two hybrids rather than just chance.

Where a result is commercially acceptable (CA), the result is not designated as statistically significant, but it may be regarded as commercially acceptable.

Where a result is not significant, we cannot conclude there is a yield difference between the hybrids. This may have two principle implications;

1. Where the yields are very similar, and the comparison has been made over more than 20 locations, no significance may indicate there is little measurable difference between the two hybrids (i.e. they yield about the same) or;
2. Where there appears to be a yield difference, no significance will generally indicate there are too few trial locations involved, or there have been inconsistent or fluctuating results. It is therefore not possible to confidently indicate whether the difference is real. In this instance, growers should use the important hybrid trait ratings to select which hybrid to plant.

On the other hand, yields may appear to be very similar but still achieve significance – this happens in cases where yield variations are small and the number of trial locations is large.

A t-test analysis of statistical significance is now carried out on all Pioneer side-by-side comparisons and we take great care to base our product yield statements on the outcome.
SELECTING THE BEST HYBRID – TRIAL NUMBERS ARE IMPORTANT

Another way of interpreting side-by-side comparisons is to assess the probability of selecting the right hybrid based on the data. The two key factors which improve the probability of selecting the right hybrid from the comparison are the number of locations involved and the size of the measured yield difference.

The table below presents the probability of selecting the right hybrid from a series of side-by-side comparisons based on these two factors.

Probability of correctly selecting the better hybrid in a silage hybrid side-by-side comparison given a specified number of trials and the measured yield difference.

<table>
<thead>
<tr>
<th>Number of Trials</th>
<th>Measured Yield Difference (kilograms of drymatter per hectare)</th>
<th>250</th>
<th>500</th>
<th>750</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57.6%</td>
<td>63.1%</td>
<td>69.1%</td>
<td>74.8%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>70.1%</td>
<td>85.4%</td>
<td>94.3%</td>
<td>98.2%</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>79.8%</td>
<td>95.2%</td>
<td>99.4%</td>
<td>>99.9%</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>88.1%</td>
<td>99.1%</td>
<td>>99.9%</td>
<td>>99.9%</td>
<td></td>
</tr>
</tbody>
</table>

Standard deviation of the yield difference is assumed to be 1,500 kgDM/ha.

Simply stated the reason we’ve strongly emphasised the importance of using multi-location data for the comparison of interest is that it is the best and most practical way of increasing your chance of selecting the highest performing hybrid.

For example where a hybrid has a yield advantage of 500 kg of drymatter per hectare – 10 trials of yield data gives a probability of 63.1% of choosing the higher yielding hybrid. This rises to 95.2% with 25 trial comparisons.

This is the tool that Pioneer® brand products uses to help growers make the best hybrid choices. We use paired comparisons, over as many paddocks as possible, within the growing region and area of adaptation of the two hybrids. This generates data which gives growers the highest probability of selecting the winning hybrid.

The table also shows that it takes fewer locations to confidently identify superior hybrids with large yield advantages, than when searching for small differences.

The table on the next page shows the format in which the analysis is presented in this publication.
P8805 compared with 38H20 for silage.

Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P8805 (%)</th>
<th>Harvest drymatter 38H20 (%)</th>
<th>Silage yield advantage to P8805 (kgDM/ha)</th>
<th>Milk profit advantage to P8805 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>27 trials</td>
<td>40.1 %</td>
<td>36.3 %</td>
<td>+ 1031 kgDM/ha</td>
<td>+ $902 /ha</td>
</tr>
</tbody>
</table>

P8805 outyields 38H20 (probability < 0.05). **This is a significant result.**

Hybrid superiority for yield is shown.

Confidently plant the "winning hybrid", but also consult the trait ratings.

The table indicates:

- The hybrids being compared (P8805 and 38H20)
- The number of seasons of data included (3)
- The total number of comparisons made between the two hybrids (27)
- Average harvest dry matter for each hybrid (40.1% and 36.3%)
- The yield advantage in kgDM/ha (1031)
- The milk profit advantage per hectare ($902)
- The level of statistical significance as explained on page 8.

Comparisons are calculated based on trials where the hybrids were planted in the same trial.

The milk profit advantage reported relates to the potential value of milksolids produced from the reported drymatter yield advantage.

Please refer to page 12 for the assumptions used in this calculation.
REGRESSION ANALYSIS

A regression analysis is used to describe the relationship between two sets of data. In the case of this publication it describes the relationship between the yields of two hybrids related to the average yield of all hybrids in a series of trials where the two hybrids have been grown together.

The regression graph below is made up by a number of important components;

- The coefficient of determination (R^2).
 This represents the proportion of the data that is explained by the lines of best fit. The higher the R^2 the more confidence we may have in the lines of best fit. If the R^2 was 1.00 the yield line would perfectly describe the hybrid yield response and every data point would fall on this line.

- The graph is plotted against the x and y axis where;
 X axis = trial average yield (in kilograms of drymatter per hectare) which is the average yield for all hybrids in the same trial.
 Y axis = yield (in kilograms of drymatter per hectare) which is the individual hybrid yield.

Along each axis the yield levels are indicated.

The yield of each hybrid is plotted against the trial average yield as a measure of environmental potential.

Each triangle or square symbol indicates an individual trial yield.

- The hybrid regression line.
 The hybrid regression line characterises the expected yield performance of a given hybrid as the average yield level changes from low to high. The regression lines of the two hybrids presented indicate the relative performance of each hybrid over the range of yield levels represented.

It is important not to extend hybrid recommendations beyond the boundaries of data points plotted on the graph. The regression is only accurate over the range of available trial yields.

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.
HYBRID SUMMARIES IN THIS PUBLICATION USE THE FOLLOWING EQUATIONS TO CALCULATE MILK PROFIT ($/HA)

Milk Profit = Milksolids Yield/ha x Milk Payout – Silage Production Costs/ha

Where

Milksolids Yield/ha = Silage Yield (kgDM/ha) x 100 g Milksolids per kgDM fed

Milk Payout is based on an expected milksolids payout of $8.75/kg as announced by Fonterra on 26 March 2014. (http://tinyurl.com/payout2014)

* A detailed listing of the cost for last season’s production was published in the Pioneer® Maize Silage 2013/2014 catalogue page 37.
Maize silage hybrid comparisons for all years cumulative up to 2014 harvest

LOWER NORTH ISLAND & Taranaki Paired Silage Comparisons of Pioneer® Brand Maize Hybrids
COMPARISON INDEX FOR LOWER NORTH ISLAND & Taranaki

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>35A30</td>
<td>PAC301</td>
<td>16</td>
<td>39V43</td>
<td>27</td>
<td>38V12</td>
<td>41</td>
<td></td>
<td>P9911</td>
<td>36M28</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39G12</td>
<td>P7524</td>
<td>28</td>
<td></td>
<td></td>
<td>39T45</td>
<td>42</td>
<td></td>
<td>P9911</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36M28</td>
<td>P0021</td>
<td>29</td>
<td></td>
<td></td>
<td>CTL85</td>
<td>43</td>
<td></td>
<td>Delitop</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9911</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td>N36-J2</td>
<td>61</td>
<td></td>
<td>P0021</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39T45</td>
<td>38V12</td>
<td>23</td>
<td></td>
<td></td>
<td>P9400</td>
<td>51</td>
<td></td>
<td>P9721</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38V12</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PAC062</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0021</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PAC065</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9400</td>
<td>47</td>
<td>39G12</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PAC301</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9721</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>39V43</td>
<td>P8805</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>39G12</td>
<td>P7524</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>39V12</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>39V43</td>
<td>P0021</td>
<td>36M28</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>39G12</td>
<td>P7524</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>38H20</td>
<td>17</td>
<td>37Y12</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>38V12</td>
<td>21</td>
<td>N36-J2</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>P0891</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>39F58</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>39T45</td>
<td>P0791</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>P0891</td>
<td>P0791</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>38H20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>38V12</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>PAC301</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>PAC062</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>PAC301</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>P0021</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>P8805</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>P0021</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>P9400</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>38V12</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>38V12</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>39G12</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>39V43</td>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 35A30 (%)</th>
<th>Harvest drymatter G49-T9 (%)</th>
<th>Silage yield advantage to 35A30 (kgDM/ha)</th>
<th>Milk profit advantage to 35A30 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>25 trials</td>
<td>33.2 %</td>
<td>33.7 %</td>
<td>+ 1411 kgDM/ha</td>
<td>+ $1234 /ha</td>
</tr>
</tbody>
</table>

35A30 outyields G49-T9 (probability < 0.01). **This is a highly significant result.** Hybrid superiority for yield is shown. Plant the "winning hybrid" with a high level of confidence, but also consult the trait ratings.

Graphical Representation:

- **35A30** $R^2 = 0.905$
- **G49-T9** $R^2 = 0.9179$

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.
35A30 compared with PAC301 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 35A30 (%)</th>
<th>Harvest drymatter PAC301 (%)</th>
<th>Silage yield advantage to 35A30 (kgDM/ha)</th>
<th>Milk profit advantage to 35A30 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>15 trials</td>
<td>33.5 %</td>
<td>33.5 %</td>
<td>+ 2951 kgDM/ha</td>
<td>+ $2582 /ha</td>
</tr>
</tbody>
</table>

35A30 outyields PAC301 (probability < 0.001). **This is a very highly significant result.** Hybrid superiority for yield is shown.
Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Pioneer® brand 35A30

Stars denote the significance level of this comparison and are not intended to be a product recommendation.

Yield Kilograms per Hectare

- **35A30**
- **PAC301**

Linear Fit

- **35A30** $R^2 = 0.8625$
- **PAC301** $R^2 = 0.7289$

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.
38H20 compared with 37Y12 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38H20 (%)</th>
<th>Harvest drymatter 37Y12 (%)</th>
<th>Silage yield advantage to 38H20 (kgDM/ha)</th>
<th>Milk profit advantage to 38H20 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>65 trials</td>
<td>38.2 %</td>
<td>36.9 %</td>
<td>+ 1294 kgDM/ha</td>
<td>+ $1132 /ha</td>
</tr>
</tbody>
</table>

38H20 outyields 37Y12 (probability < 0.001). **This is a very highly significant result.** Hybrid superiority for yield is shown. Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Pioneer® brand 38H20

Stars denote the significance level of this comparison and are not intended to be a product recommendation.

Lower North Island & Taranaki
38H20 compared with CTL85 for silage.

Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38H20 (%)</th>
<th>Harvest drymatter CTL85 (%)</th>
<th>Silage yield advantage to 38H20 (kgDM/ha)</th>
<th>Milk profit advantage to 38H20 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>74 trials</td>
<td>35.8 %</td>
<td>39.0 %</td>
<td>+ 1928 kgDM/ha</td>
<td>+ $1687 /ha</td>
</tr>
</tbody>
</table>

38H20 outyields CTL85 (probability < 0.001). **This is a very highly significant result.**

Hybrid superiority for yield is shown. Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Graphical Representation:

- **38H20** R² = 0.7871
- **CTL85** R² = 0.7763

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Lower North Island & Taranaki
38H20 compared with DKC43-72 for silage.

Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38H20 (%)</th>
<th>Harvest drymatter DKC43-72 (%)</th>
<th>Silage yield advantage to 38H20 (kgDM/ha)</th>
<th>Milk profit advantage to 38H20 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>35 trials</td>
<td>35.9 %</td>
<td>36.4 %</td>
<td>+ 904 kgDM/ha</td>
<td>+ $791 /ha</td>
</tr>
</tbody>
</table>

38H20 outyields DKC43-72 (probability < 0.05). **This is a significant result.**

Hybrid superiority for yield is shown.

Confidently plant the "winning hybrid", but also consult the trait ratings.

Pioneer® brand 38H20

Lower North Island & Taranaki
38V12 compared with 37Y12 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38V12 (%)</th>
<th>Harvest drymatter 37Y12 (%)</th>
<th>Silage yield advantage to 38V12 (kgDM/ha)</th>
<th>Milk profit advantage to 38V12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>46 trials</td>
<td>38.5 %</td>
<td>36.7 %</td>
<td>+ 1512 kgDM/ha</td>
<td>+ $1323 /ha</td>
</tr>
</tbody>
</table>

Pioneer® brand 38V12

38V12 outyields 37Y12 (probability < 0.001). **This is a very highly significant result.**

Hybrid superiority for yield is shown. Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.

Lower North Island & Taranaki

![Graph showing yield comparison between 38V12 and 37Y12](image-url)

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.
38V12 compared with 38H20 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38V12 (%)</th>
<th>Harvest drymatter 38H20 (%)</th>
<th>Silage yield advantage to 38V12 (kgDM/ha)</th>
<th>Milk profit advantage to 38V12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>171 trials</td>
<td>35.6 %</td>
<td>35.9 %</td>
<td>+ 136 kgDM/ha</td>
<td>+ $119 /ha</td>
</tr>
</tbody>
</table>

This is not a significant result. **Hybrid superiority for yield cannot be claimed.** This either means more trial locations and seasons are needed to achieve significance or there is no yield difference between the hybrids. **Ignore the yield comparison for hybrid selection.** Refer primarily to trait ratings to select between the hybrids.

Pioneer® brand 38V12

\[
38V12 \ R^2 = 0.833 \\
38H20 \ R^2 = 0.7898
\]

Each triangle or square indicates a trial result for the indicated hybrid. The lines of “best fit” show the relative performance of each hybrid.
38V12 compared with 39F58 for silage. Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38V12 (%)</th>
<th>Harvest drymatter 39F58 (%)</th>
<th>Silage yield advantage to 38V12 (kgDM/ha)</th>
<th>Milk profit advantage to 38V12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>80 trials</td>
<td>35.0 %</td>
<td>36.0 %</td>
<td>+ 927 kgDM/ha</td>
<td>+ $811 /ha</td>
</tr>
</tbody>
</table>

38V12 outyields 39F58 (probability < 0.001). **This is a very highly significant result.**

Hybrid superiority for yield is shown.

Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Pioneer® brand 38V12

- 38V12 $R^2 = 0.8143$
- 39F58 $R^2 = 0.8246$

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.
38V12 compared with 39T45 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38V12 (%)</th>
<th>Harvest drymatter 39T45 (%)</th>
<th>Silage yield advantage to 38V12 (kgDM/ha)</th>
<th>Milk profit advantage to 38V12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>95 trials</td>
<td>35.7 %</td>
<td>39.1 %</td>
<td>+ 1916 kgDM/ha</td>
<td>+ $1676 /ha</td>
</tr>
</tbody>
</table>

38V12 outyields 39T45 (probability < 0.001). **This is a very highly significant result.**

Hybrid superiority for yield is shown. Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

38V12 outyields 39T45 (probability < 0.001). This is a very highly significant result.

Hybrid superiority for yield is shown. Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.
38V12 compared with CTL85 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38V12 (%)</th>
<th>Harvest drymatter CTL85 (%)</th>
<th>Silage yield advantage to 38V12 (kgDM/ha)</th>
<th>Milk profit advantage to 38V12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>76 trials</td>
<td>36.0 %</td>
<td>39.1 %</td>
<td>+ 2287 kgDM/ha</td>
<td>+ $2001 /ha</td>
</tr>
</tbody>
</table>

38V12 outyields CTL85 (probability < 0.001). This is a very highly significant result. Hybrid superiority for yield is shown.
Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Pioneer® brand 38V12

Stars denote the significance level of this comparison and are not intended to be a product recommendation.
38V12 compared with DKC43-72 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38V12 (%)</th>
<th>Harvest drymatter DKC43-72 (%)</th>
<th>Silage yield advantage to 38V12 (kgDM/ha)</th>
<th>Milk profit advantage to 38V12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>37 trials</td>
<td>36.5 %</td>
<td>37.3 %</td>
<td>+ 1047 kgDM/ha</td>
<td>+ $916 /ha</td>
</tr>
</tbody>
</table>

38V12 outyields DKC43-72 (probability < 0.05). This is a significant result. Hybrid superiority for yield is shown. Confidently plant the "winning hybrid", but also consult the trait ratings.

![chart](chart.png)

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Lower North Island & Taranaki
39G12 compared with 39T45 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 39G12 (%)</th>
<th>Harvest drymatter 39T45 (%)</th>
<th>Silage yield advantage to 39G12 (kgDM/ha)</th>
<th>Milk profit advantage to 39G12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>57 trials</td>
<td>39.2 %</td>
<td>38.5 %</td>
<td>+ 385 kgDM/ha</td>
<td>+ $337 /ha</td>
</tr>
</tbody>
</table>

This is not a significant result. Hybrid superiority for yield cannot be claimed. This either means more trial locations and seasons are needed to achieve significance or there is no yield difference between the hybrids. **Ignore the yield comparison for hybrid selection.** Refer primarily to trait ratings to select between the hybrids.

NS

NS denotes that this comparison is "not significant" and is not intended to be a product recommendation.

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.
39G12 compared with 39V43 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 39G12 (%)</th>
<th>Harvest drymatter 39V43 (%)</th>
<th>Silage yield advantage to 39G12 (kgDM/ha)</th>
<th>Milk profit advantage to 39G12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>33 trials</td>
<td>37.5 %</td>
<td>40.2 %</td>
<td>+ 2798 kgDM/ha</td>
<td>+ $2448 /ha</td>
</tr>
</tbody>
</table>

39G12 outyields 39V43 (probability < 0.001). **This is a very highly significant result.**
Hybrid superiority for yield is shown.
Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.
39G12 compared with P7524 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 39G12 (%)</th>
<th>Harvest drymatter P7524 (%)</th>
<th>Silage yield advantage to 39G12 (kgDM/ha)</th>
<th>Milk profit advantage to 39G12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>27 trials</td>
<td>37.8 %</td>
<td>39.2 %</td>
<td>+ 688 kgDM/ha</td>
<td>+ $602 /ha</td>
</tr>
</tbody>
</table>

This is not a significant result. **Hybrid superiority for yield cannot be claimed.** This either means more trial locations and seasons are needed to achieve significance or there is no yield difference between the hybrids. **Ignore the yield comparison for hybrid selection.** Refer primarily to trait ratings to select between the hybrids.

Pioneer® brand 39G12

![Graph showing yield comparison between 39G12 and P7524](image)

Each triangle or square indicates a trial result for the indicated hybrid. The lines of “best fit” show the relative performance of each hybrid.

Lower North Island & Taranaki
P0021 compared with 36M28 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P0021 (%)</th>
<th>Harvest drymatter 36M28 (%)</th>
<th>Silage yield advantage to P0021 (kgDM/ha)</th>
<th>Milk profit advantage to P0021 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>30 trials</td>
<td>35.3 %</td>
<td>34.9 %</td>
<td>+ 475 kgDM/ha</td>
<td>+ $416 /ha</td>
</tr>
</tbody>
</table>

P0021 outyields 36M28 (probability < 0.10). This comparison is not statistically "significant" scientifically, but is a commercially acceptable indication that may assist with product positioning. Plant the "winning hybrid", but also consult the trait ratings.

CA

CA denotes the significance level of this comparison and is not intended to be a product recommendation.
P0021 compared with 37Y12 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P0021 (%)</th>
<th>Harvest drymatter 37Y12 (%)</th>
<th>Silage yield advantage to P0021 (kgDM/ha)</th>
<th>Milk profit advantage to P0021 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>22 trials</td>
<td>36.1 %</td>
<td>36.9 %</td>
<td>+ 2109 kgDM/ha</td>
<td>+ $1845 /ha</td>
</tr>
</tbody>
</table>

P0021 outyields 37Y12 (probability < 0.001). **This is a very highly significant result.**
Hybrid superiority for yield is shown.
Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.

Lower North Island & Taranaki
P0021 compared with N36-J2 for silage.

Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P0021 (%)</th>
<th>Harvest drymatter N36-J2 (%)</th>
<th>Silage yield advantage to P0021 (kgDM/ha)</th>
<th>Milk profit advantage to P0021 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15 trials</td>
<td>37.2 %</td>
<td>35.2 %</td>
<td>+ 2185 kgDM/ha</td>
<td>+ $1912 /ha</td>
</tr>
</tbody>
</table>

P0021 outyields N36-J2 (probability < 0.001). **This is a very highly significant result.** Hybrid superiority for yield is shown.

Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.
P0021 compared with P9400 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P0021 (%)</th>
<th>Harvest drymatter P9400 (%)</th>
<th>Silage yield advantage to P0021 (kgDM/ha)</th>
<th>Milk profit advantage to P0021 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>62 trials</td>
<td>35.2 %</td>
<td>36.7 %</td>
<td>+ 656 kgDM/ha</td>
<td>+ $574 /ha</td>
</tr>
</tbody>
</table>

P0021 outyields P9400 (probability < 0.01). This is a highly significant result. Hybrid superiority for yield is shown. Plant the "winning hybrid" with a high level of confidence, but also consult the trait ratings.

Pioneer® brand
P0021

P0021 R² = 0.85
P9400 R² = 0.8817

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.
P0021 compared with P9721 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P0021 (%)</th>
<th>Harvest drymatter P9721 (%)</th>
<th>Silage yield advantage to P0021 (kgDM/ha)</th>
<th>Milk profit advantage to P0021 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>60 trials</td>
<td>36.3 %</td>
<td>36.1 %</td>
<td>+ 187 kgDM/ha</td>
<td>+ $164 /ha</td>
</tr>
</tbody>
</table>

This is not a significant result. **Hybrid superiority for yield cannot be claimed.** This either means more trial locations and seasons are needed to achieve significance or there is no yield difference between the hybrids. **Ignore the yield comparison for hybrid selection.** Refer primarily to trait ratings to select between the hybrids.

NS

NS denotes that this comparison is "not significant" and is not intended to be a product recommendation.

Pioneer® brand P0021

![Graph showing yield comparison between P0021 and P9721](image)

- **P0021** R² = 0.7914
- **P9721** R² = 0.7398

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Lower North Island & Taranaki
P0021 compared with PAC301 for silage. Lower North Island & Taranaki

| Number of seasons | Number of comparisons | Harvest drymatter P0021 (%) | Harvest drymatter PAC301 (%) | Silage yield advantage to P0021 (kgDM/ha) | Milk profit advantage to P0021 ($/ha)

| 2 | 20 trials | 36.4 % | 33.8 % | + 1595 kgDM/ha | + $1395 /ha

P0021 outyields PAC301 (probability < 0.001). **This is a very highly significant result.** Hybrid superiority for yield is shown. Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.
P0021 compared with PAC504 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P0021 (%)</th>
<th>Harvest drymatter PAC504 (%)</th>
<th>Silage yield advantage to P0021 (kgDM/ha)</th>
<th>Milk profit advantage to P0021 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>25 trials</td>
<td>35.7 %</td>
<td>35.5 %</td>
<td>+2282 kgDM/ha</td>
<td>+$1997/ha</td>
</tr>
</tbody>
</table>

P0021 outyields PAC504 (probability < 0.001). This is a very highly significant result. Hybrid superiority for yield is shown.

Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Pioneer® brand

P0021

P0021 \(R^2 = 0.8503 \)

PAC504 \(R^2 = 0.8076 \)

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.
P0891 compared with G49-T9 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P0891 (%)</th>
<th>Harvest drymatter G49-T9 (%)</th>
<th>Silage yield advantage to P0891 (kgDM/ha)</th>
<th>Milk profit advantage to P0891 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>14 trials</td>
<td>33.8 %</td>
<td>35.0 %</td>
<td>+ 1651 kgDM/ha</td>
<td>+ $1444 /ha</td>
</tr>
</tbody>
</table>

P0891 outyields G49-T9 (probability < 0.05). **This is a significant result.**

Hybrid superiority for yield is shown.
Confidently plant the "winning hybrid", but also consult the trait ratings.

P0891 R² = 0.8191
G49-T9 R² = 0.8327

Each triangle or square indicates a trial result for the indicated hybrid.
The lines of "best fit" show the relative performance of each hybrid.

Star denotes the significance level of this comparison and is not intended to be a product recommendation.
P0891 compared with P0021 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P0891 (%)</th>
<th>Harvest drymatter P0021 (%)</th>
<th>Silage yield advantage to P0891 (kgDM/ha)</th>
<th>Milk profit advantage to P0891 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>18 trials</td>
<td>33.7 %</td>
<td>36.4 %</td>
<td>+ 1048 kgDM/ha</td>
<td>+ $917 /ha</td>
</tr>
</tbody>
</table>

P0891 outyields P0021 (probability < 0.10). This comparison is not statistically "significant" scientifically, but is a commercially acceptable indication that may assist with product positioning. Plant the "winning hybrid", but also consult the trait ratings.

P0891 R² = 0.8964
P0021 R² = 0.8871

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Lower North Island & Taranaki
P0891 compared with P0791 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P0891 (%)</th>
<th>Harvest drymatter P0791 (%)</th>
<th>Silage yield advantage to P0891 (kgDM/ha)</th>
<th>Milk profit advantage to P0891 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>23 trials</td>
<td>33.9 %</td>
<td>32.7 %</td>
<td>+ 593 kgDM/ha</td>
<td>+ $519 /ha</td>
</tr>
</tbody>
</table>

This is not a significant result. **Hybrid superiority for yield cannot be claimed.** This either means more trial locations and seasons are needed to achieve significance or there is no yield difference between the hybrids. **Ignore the yield comparison for hybrid selection.** Refer primarily to trait ratings to select between the hybrids.

Pioneer® brand P0891

This table compares the performance of two hybrids, P0891 and P0791, in terms of harvest drymatter yield and silage yield advantage. The table indicates that P0891 has a slightly higher yield (33.9%) compared to P0791 (32.7%), with a significant advantage of 593 kgDM/ha. The milk profit advantage also favors P0891, with an additional $519/ha.

The chart illustrates the yield comparison, with each triangle or square representing a trial result for the respective hybrid. The lines of “best fit” show the relative performance of each hybrid.

NS

NS denotes that this comparison is “not significant” and is not intended to be a product recommendation.

Lower North Island & Taranaki

Each triangle or square indicates a trial result for the indicated hybrid. The lines of “best fit” show the relative performance of each hybrid.
P7524 compared with 39V43 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P7524 (%)</th>
<th>Harvest drymatter 39V43 (%)</th>
<th>Silage yield advantage to P7524 (kgDM/ha)</th>
<th>Milk profit advantage to P7524 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>29 trials</td>
<td>38.9 %</td>
<td>40.4 %</td>
<td>+ 2203 kgDM/ha</td>
<td>+ $1927 /ha</td>
</tr>
</tbody>
</table>

P7524 outyields 39V43 (probability < 0.001). **This is a very highly significant result.**
Hybrid superiority for yield is shown.
Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Pioneer® brand

P7524

P7524

R² = 0.8731

39V43

R² = 0.7623

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.
P8805 compared with 38H20 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P8805 (%)</th>
<th>Harvest drymatter 38H20 (%)</th>
<th>Silage yield advantage to P8805 (kgDM/ha)</th>
<th>Milk profit advantage to P8805 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>27 trials</td>
<td>40.1 %</td>
<td>36.3 %</td>
<td>+ 1031 kgDM/ha</td>
<td>+ $902 /ha</td>
</tr>
</tbody>
</table>

P8805 outyields 38H20 (probability < 0.05). This is a significant result. Hybrid superiority for yield is shown. Confidently plant the "winning hybrid", but also consult the trait ratings.

Star denotes the significance level of this comparison and is not intended to be a product recommendation.
Lower North Island & Taranaki

P8805 compared with 38V12 for silage.

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P8805 (%)</th>
<th>Harvest drymatter 38V12 (%)</th>
<th>Silage yield advantage to P8805 (kgDM/ha)</th>
<th>Milk profit advantage to P8805 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>42 trials</td>
<td>39.9 %</td>
<td>37.4 %</td>
<td>+ 36 kgDM/ha</td>
<td>+ $32 /ha</td>
</tr>
</tbody>
</table>

This is not a significant result. **Hybrid superiority for yield cannot be claimed.** This either means more trial locations and seasons are needed to achieve significance or there is no yield difference between the hybrids. **Ignore the yield comparison for hybrid selection.** Refer primarily to trait ratings to select between the hybrids.

Pioneer® brand

P8805

\[P8805 \text{ R}^2 = 0.7738 \]

\[38V12 \text{ R}^2 = 0.7668 \]

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.
P8805 compared with 39T45 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Parameter</th>
<th>P8805 (%)</th>
<th>39T45 (%)</th>
<th>Silage yield advantage to P8805 (kgDM/ha)</th>
<th>Milk profit advantage to P8805 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of seasons</td>
<td>3</td>
<td>26 trials</td>
<td>36.9%</td>
<td>+ 2726 kgDM/ha</td>
</tr>
<tr>
<td>Number of comparisons</td>
<td>3</td>
<td>26 trials</td>
<td>39.0%</td>
<td></td>
</tr>
<tr>
<td>Harvest drymatter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P8805</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39T45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P8805 outyields 39T45 (probability < 0.001). This is a very highly significant result. Hybrid superiority for yield is shown. Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.

Lower North Island & Taranaki
P8805 compared with CTL85 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P8805 (%)</th>
<th>Harvest drymatter CTL85 (%)</th>
<th>Silage yield advantage to P8805 (kgDM/ha)</th>
<th>Milk profit advantage to P8805 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12 trials</td>
<td>38.3 %</td>
<td>39.2 %</td>
<td>+ 2078 kgDM/ha</td>
<td>+ $1818 /ha</td>
</tr>
</tbody>
</table>

P8805 outyields CTL85 (probability < 0.01). **This is a highly significant result.**
Hybrid superiority for yield is shown.
Plant the "winning hybrid" with a high level of confidence, but also consult the trait ratings.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.

Lower North Island & Taranaki
P8805 compared with Delitop for silage.

Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P8805 (%)</th>
<th>Harvest drymatter Delitop (%)</th>
<th>Silage yield advantage to P8805 (kgDM/ha)</th>
<th>Milk profit advantage to P8805 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>23 trials</td>
<td>36.8 %</td>
<td>39.7 %</td>
<td>+ 1762 kgDM/ha</td>
<td>+ $1542 /ha</td>
</tr>
</tbody>
</table>

P8805 outyields Delitop (probability < 0.001). This is a very highly significant result. Hybrid superiority for yield is shown.

Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Lower North Island & Taranaki
P8805 compared with PAC062 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P8805 (%)</th>
<th>Harvest drymatter PAC062 (%)</th>
<th>Silage yield advantage to P8805 (kgDM/ha)</th>
<th>Milk profit advantage to P8805 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19 trials</td>
<td>37.9 %</td>
<td>36.0 %</td>
<td>+ 2149 kgDM/ha</td>
<td>+ $1881 /ha</td>
</tr>
</tbody>
</table>

P8805 outyields PAC062 (probability < 0.001). This is a very highly significant result.

Hybrid superiority for yield is shown.

Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.
P8805 compared with PAC065 for silage.

Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P8805 (%)</th>
<th>Harvest drymatter PAC065 (%)</th>
<th>Silage yield advantage to P8805 (kgDM/ha)</th>
<th>Milk profit advantage to P8805 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 trials</td>
<td>40.7 %</td>
<td>37.3 %</td>
<td>+ 1249 kgDM/ha</td>
<td>+ $1093 /ha</td>
</tr>
</tbody>
</table>

P8805 outyields PAC065 (probability < 0.10). **This comparison is not statistically "significant" scientifically**, but is a **commercially acceptable** indication that may assist with product positioning. Plant the "winning hybrid", but also consult the trait ratings.

CA

CA denotes the significance level of this comparison and is not intended to be a product recommendation.
P9400 compared with 37Y12 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9400 (%)</th>
<th>Harvest drymatter 37Y12 (%)</th>
<th>Silage yield advantage to P9400 (kgDM/ha)</th>
<th>Milk profit advantage to P9400 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>42 trials</td>
<td>37.5 %</td>
<td>36.7 %</td>
<td>+ 1631 kgDM/ha</td>
<td>+ $1427 /ha</td>
</tr>
</tbody>
</table>

P9400 outyields 37Y12 (probability < 0.001). This is a very highly significant result. Hybrid superiority for yield is shown. Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

P9400 $R^2 = 0.7842$
37Y12 $R^2 = 0.8735$

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.
P9400 compared with 38V12 for silage. Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9400 (%)</th>
<th>Harvest drymatter 38V12 (%)</th>
<th>Silage yield advantage to P9400 (kgDM/ha)</th>
<th>Milk profit advantage to P9400 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>104 trials</td>
<td>35.5 %</td>
<td>36.9 %</td>
<td>+ 254 kgDM/ha</td>
<td>+ $222 /ha</td>
</tr>
</tbody>
</table>

This is not a significant result. **Hybrid superiority for yield cannot be claimed.** This either means more trial locations and seasons are needed to achieve significance or there is no yield difference between the hybrids. **Ignore the yield comparison for hybrid selection.** Refer primarily to trait ratings to select between the hybrids.

Lower North Island & Taranaki

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

NS

NS denotes that this comparison is "not significant" and is not intended to be a product recommendation.
P9400 compared with CTL85 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9400 (%)</th>
<th>Harvest drymatter CTL85 (%)</th>
<th>Silage yield advantage to P9400 (kgDM/ha)</th>
<th>Milk profit advantage to P9400 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>23 trials</td>
<td>36.3 %</td>
<td>39.4 %</td>
<td>+ 3342 kgDM/ha</td>
<td>+ $2924 /ha</td>
</tr>
</tbody>
</table>

P9400 outyields CTL85 (probability < 0.001). This is a very highly significant result. Hybrid superiority for yield is shown. Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.
P9400 compared with DKC43-72 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9400 (%)</th>
<th>Harvest drymatter DKC43-72 (%)</th>
<th>Silage yield advantage to P9400 (kgDM/ha)</th>
<th>Milk profit advantage to P9400 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>31 trials</td>
<td>36.1 %</td>
<td>38.0 %</td>
<td>+ 1205 kgDM/ha</td>
<td>+ $1055 /ha</td>
</tr>
</tbody>
</table>

P9400 outyields DKC43-72 (probability < 0.05). **This is a significant result.** Hybrid superiority for yield is shown. Confidently plant the "winning hybrid", but also consult the trait ratings.

P9400 R² = 0.8753
DKC43-72 R² = 0.8578

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Lower North Island & Taranaki
P9400 compared with P8805 for silage.

Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9400 (%)</th>
<th>Harvest drymatter P8805 (%)</th>
<th>Silage yield advantage to P9400 (kgDM/ha)</th>
<th>Milk profit advantage to P9400 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>27 trials</td>
<td>38.0 %</td>
<td>40.5 %</td>
<td>+ 1292 kgDM/ha</td>
<td>+ $1131 /ha</td>
</tr>
</tbody>
</table>

P9400 outyields P8805 (probability < 0.01). **This is a highly significant result.**

Hybrid superiority for yield is shown.

Plant the "winning hybrid" with a high level of confidence, but also consult the trait ratings.

Pioneer® brand P9400

![Graph showing yield comparison between P9400 and P8805](chart.png)

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Lower North Island & Taranaki
P9400 compared with P9721 for silage. Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9400 (%)</th>
<th>Harvest drymatter P9721 (%)</th>
<th>Silage yield advantage to P9400 (kgDM/ha)</th>
<th>Milk profit advantage to P9400 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>62 trials</td>
<td>37.9 %</td>
<td>35.7 %</td>
<td>+ 205 kgDM/ha</td>
<td>+ $179 /ha</td>
</tr>
</tbody>
</table>

This is not a significant result. **Hybrid superiority for yield cannot be claimed.** This either means more trial locations and seasons are needed to achieve significance or there is no yield difference between the hybrids. **Ignore the yield comparison for hybrid selection.** Refer primarily to trait ratings to select between the hybrids.

The lines of "best fit" show the relative performance of each hybrid. Each triangle or square indicates a trial result for the indicated hybrid.
P9400 compared with PAC062 for silage.

Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9400 (%)</th>
<th>Harvest drymatter PAC062 (%)</th>
<th>Silage yield advantage to P9400 (kgDM/ha)</th>
<th>Milk profit advantage to P9400 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 trials</td>
<td>37.7 %</td>
<td>38.0 %</td>
<td>+ 2944 kgDM/ha</td>
<td>+ $2576 /ha</td>
</tr>
</tbody>
</table>

P9400 outyields PAC062 (probability < 0.01). This is a highly significant result. *Hybrid superiority for yield is shown.*

Plant the "winning hybrid" with a high level of confidence, but also consult the trait ratings.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.

![Graph showing yield comparison between P9400 and PAC062](image-url)

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Lower North Island & Taranaki
P9400 compared with PAC065 for silage.

Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9400 (%)</th>
<th>Harvest drymatter PAC065 (%)</th>
<th>Silage yield advantage to P9400 (kgDM/ha)</th>
<th>Milk profit advantage to P9400 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9 trials</td>
<td>37.2 %</td>
<td>36.9 %</td>
<td>+ 2338 kgDM/ha</td>
<td>+ $2046 /ha</td>
</tr>
</tbody>
</table>

P9400 outyields PAC065 (probability < 0.01). This is a highly significant result.

Hybrid superiority for yield is shown.

Plant the "winning hybrid" with a high level of confidence, but also consult the trait ratings.

Graph and Diagram Details:

- **Graph Title:** Lower North Island & Taranaki

- **Graph Description:** Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

- **Graph Data:**
 - **P9400**
 - $R^2 = 0.8087$
 - **PAC065**
 - $R^2 = 0.7065$

Stars denote the significance level of this comparison and are not intended to be a product recommendation.
P9400 compared with PAC504 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9400 (%)</th>
<th>Harvest drymatter PAC504 (%)</th>
<th>Silage yield advantage to P9400 (kgDM/ha)</th>
<th>Milk profit advantage to P9400 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>34 trials</td>
<td>36.4 %</td>
<td>34.7 %</td>
<td>+ 1057 kgDM/ha</td>
<td>+ $925 /ha</td>
</tr>
</tbody>
</table>

P9400 outyields PAC504 (probability < 0.01). **This is a highly significant result.** Hybrid superiority for yield is shown.
Plant the "winning hybrid" with a high level of confidence, but also consult the trait ratings.

Pioneer® brand P9400

- **P9400 R² = 0.8044**
- **PAC504 R² = 0.7996**

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.
P9721 compared with 37Y12 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9721 (%)</th>
<th>Harvest drymatter 37Y12 (%)</th>
<th>Silage yield advantage to P9721 (kgDM/ha)</th>
<th>Milk profit advantage to P9721 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>21 trials</td>
<td>37.6 %</td>
<td>38.1 %</td>
<td>+ 1881 kgDM/ha</td>
<td>+ $1645 /ha</td>
</tr>
</tbody>
</table>

P9721 outyields 37Y12 (probability < 0.01). **This is a highly significant result.**
Hybrid superiority for yield is shown.
Plant the "winning hybrid" with a high level of confidence, but also consult the trait ratings.

Lower North Island & Taranaki
P9721 compared with CTL96 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9721 (%)</th>
<th>Harvest drymatter CTL96 (%)</th>
<th>Silage yield advantage to P9721 (kgDM/ha)</th>
<th>Milk profit advantage to P9721 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>24 trials</td>
<td>35.8 %</td>
<td>34.5 %</td>
<td>+ 2059 kgDM/ha</td>
<td>+ $1802 /ha</td>
</tr>
</tbody>
</table>

P9721 outyields CTL96 (probability < 0.001). **This is a very highly significant result.**

Hybrid superiority for yield is shown.
Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Pioneer® brand P9721

Stars denote the significance level of this comparison and are not intended to be a product recommendation.
P9911 compared with 36M28 for silage. Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9911 (%)</th>
<th>Harvest drymatter 36M28 (%)</th>
<th>Silage yield advantage to P9911 (kgDM/ha)</th>
<th>Milk profit advantage to P9911 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9 trials</td>
<td>34.7 %</td>
<td>36.4 %</td>
<td>+ 1406 kgDM/ha</td>
<td>+ $1231 /ha</td>
</tr>
</tbody>
</table>

P9911 outyields 36M28 (probability < 0.05). This is a significant result. Hybrid superiority for yield is shown. Confidently plant the "winning hybrid", but also consult the trait ratings.

Data Table

<table>
<thead>
<tr>
<th>Trial Average Yield Kilograms per Hectare</th>
<th>P9911 R² = 0.7272</th>
<th>36M28 R² = 0.6411</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Kilograms per Hectare</td>
<td>15000</td>
<td>17000</td>
</tr>
<tr>
<td></td>
<td>19000</td>
<td>21000</td>
</tr>
<tr>
<td></td>
<td>23000</td>
<td>25000</td>
</tr>
</tbody>
</table>

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Note: Star denotes the significance level of this comparison and is not intended to be a product recommendation.
P9911 compared with CTL100 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9911 (%)</th>
<th>Harvest drymatter CTL100 (%)</th>
<th>Silage yield advantage to P9911 (kgDM/ha)</th>
<th>Milk profit advantage to P9911 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12 trials</td>
<td>34.2 %</td>
<td>34.9 %</td>
<td>+ 1861 kgDM/ha</td>
<td>+ $1629 /ha</td>
</tr>
</tbody>
</table>

P9911 outyields CTL100 (probability < 0.05). **This is a significant result.**

Hybrid superiority for yield is shown.

Confidently plant the "winning hybrid", but also consult the trait ratings.

Pioneer® brand

P9911

Each triangle or square indicates a trial result for the indicated hybrid. The lines of “best fit” show the relative performance of each hybrid.

Lower North Island & Taranaki
P9911 compared with CTL96 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9911 (%)</th>
<th>Harvest drymatter CTL96 (%)</th>
<th>Silage yield advantage to P9911 (kgDM/ha)</th>
<th>Milk profit advantage to P9911 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9 trials</td>
<td>34.4 %</td>
<td>35.1 %</td>
<td>+ 3235 kgDM/ha</td>
<td>+ $2831 /ha</td>
</tr>
</tbody>
</table>

P9911 outyields CTL96 (probability < 0.01). **This is a highly significant result.**
Hybrid superiority for yield is shown.
Plant the "winning hybrid" with a high level of confidence, but also consult the trait ratings.

![Graph showing yield comparison between P9911 and CTL96](image)

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.
P9911 compared with N36-J2 for silage.
Lower North Island & Taranaki

| Number of seasons | Number of comparisons | Harvest drymatter P9911 (%) | Harvest drymatter N36-J2 (%) | Silage yield advantage to P9911 (kgDM/ha) | Milk profit advantage to P9911 ($/ha)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14 trials</td>
<td>34.9 %</td>
<td>35.3 %</td>
<td>+ 2089 kgDM/ha</td>
<td>+ $1828 /ha</td>
</tr>
</tbody>
</table>

P9911 outyields N36-J2 (probability < 0.01). This is a highly significant result. Hybrid superiority for yield is shown. Plant the "winning hybrid" with a high level of confidence, but also consult the trait ratings.

P9911 R² = 0.478
N36-J2 R² = 0.7271

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Lower North Island & Taranaki
P9911 compared with P0021 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9911 (%)</th>
<th>Harvest drymatter P0021 (%)</th>
<th>Silage yield advantage to P9911 (kgDM/ha)</th>
<th>Milk profit advantage to P9911 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>52 trials</td>
<td>34.5 %</td>
<td>36.8 %</td>
<td>+ 598 kgDM/ha</td>
<td>+ $524 /ha</td>
</tr>
</tbody>
</table>

P9911 outyields P0021 (probability < 0.10). This comparison is not statistically "significant" scientifically, but is a commercially acceptable indication that may assist with product positioning. Plant the "winning hybrid", but also consult the trait ratings.
P9911 compared with P9400 for silage.
Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9911 (%)</th>
<th>Harvest drymatter P9400 (%)</th>
<th>Silage yield advantage to P9911 (kgDM/ha)</th>
<th>Milk profit advantage to P9911 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>30 trials</td>
<td>34.1%</td>
<td>38.3%</td>
<td>+ 394 kgDM/ha</td>
<td>+ $345 /ha</td>
</tr>
</tbody>
</table>

This is not a significant result. **Hybrid superiority for yield cannot be claimed.** This either means more trial locations and seasons are needed to achieve significance or there is no yield difference between the hybrids. **Ignore the yield comparison for hybrid selection.** Refer primarily to trait ratings to select between the hybrids.

Lower North Island & Taranaki

Pioneer® brand P9911

P9911 $R^2 = 0.8311$

P9400 $R^2 = 0.8877$

Each triangle or square indicates a trial result for the indicated hybrid. The lines of “best fit” show the relative performance of each hybrid.

NS

NS denotes that this comparison is “not significant” and is not intended to be a product recommendation.
P9911 compared with P9721 for silage.

Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter (P9911) (%)</th>
<th>Harvest drymatter (P9721) (%)</th>
<th>Silage yield advantage to (P9911) (kgDM/ha)</th>
<th>Milk profit advantage to (P9911) ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>36 trials</td>
<td>34.3 %</td>
<td>36.6 %</td>
<td>+ 472 kgDM/ha</td>
<td>+ $413 /ha</td>
</tr>
</tbody>
</table>

This is not a significant result. **Hybrid superiority for yield cannot be claimed.** This either means more trial locations and seasons are needed to achieve significance or there is no yield difference between the hybrids. **Ignore the yield comparison for hybrid selection.** Refer primarily to trait ratings to select between the hybrids.

NS

NS denotes that this comparison is "not significant" and is not intended to be a product recommendation.
P9911 compared with PAC301 for silage. Lower North Island & Taranaki

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P9911 (%)</th>
<th>Harvest drymatter PAC301 (%)</th>
<th>Silage yield advantage to P9911 (kgDM/ha)</th>
<th>Milk profit advantage to P9911 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>17 trials</td>
<td>34.2 %</td>
<td>33.5 %</td>
<td>+ 2303 kgDM/ha</td>
<td>+ $2015 /ha</td>
</tr>
</tbody>
</table>

P9911 outyields PAC301 (probability < 0.01). This is a highly significant result. Hybrid superiority for yield is shown.
Plant the "winning hybrid" with a high level of confidence, but also consult the trait ratings.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.
Pioneer Research Station (Normanby) - Trial 1
Location: NORMANBY
Planting Date: 13/10/2013
Harvest Date: 5/03/2014
Days from planting to harvest: 143
Trial Altitude: 117 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39V43</td>
<td>33.8</td>
<td>22.29</td>
</tr>
<tr>
<td>P7524</td>
<td>30.8</td>
<td>21.51</td>
</tr>
<tr>
<td>Average</td>
<td>32.3</td>
<td>21.9</td>
</tr>
</tbody>
</table>

Pioneer Research Station (Normanby) - Trial 2
Location: NORMANBY
Planting Date: 13/10/2013
Harvest Date: 20/03/2014
Days from planting to harvest: 158
Trial Altitude: 117 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39T45</td>
<td>44.7</td>
<td>28.35</td>
</tr>
<tr>
<td>P8844</td>
<td>35.9</td>
<td>26.64</td>
</tr>
<tr>
<td>P8805</td>
<td>38.7</td>
<td>26.22</td>
</tr>
<tr>
<td>38V12</td>
<td>36.7</td>
<td>26.17</td>
</tr>
<tr>
<td>X85C385</td>
<td>36.9</td>
<td>25.37</td>
</tr>
<tr>
<td>X90B216</td>
<td>34.8</td>
<td>24.71</td>
</tr>
<tr>
<td>X90B153</td>
<td>40.1</td>
<td>23.22</td>
</tr>
<tr>
<td>X85B084</td>
<td>38.8</td>
<td>23.06</td>
</tr>
<tr>
<td>Average</td>
<td>38.3</td>
<td>25.5</td>
</tr>
</tbody>
</table>

Pioneer Research Station (Normanby) - Trial 3
Location: NORMANBY
Planting Date: 13/10/2013
Harvest Date: 26/03/2014
Days from planting to harvest: 164
Trial Altitude: 117 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0021</td>
<td>37.9</td>
<td>26.51</td>
</tr>
<tr>
<td>38V12</td>
<td>40.2</td>
<td>26.27</td>
</tr>
<tr>
<td>X00G099</td>
<td>37.2</td>
<td>25.96</td>
</tr>
<tr>
<td>P9400</td>
<td>37.0</td>
<td>25.60</td>
</tr>
<tr>
<td>X85C385</td>
<td>43.8</td>
<td>25.26</td>
</tr>
<tr>
<td>P9911</td>
<td>33.7</td>
<td>24.58</td>
</tr>
<tr>
<td>P9606</td>
<td>36.6</td>
<td>24.29</td>
</tr>
<tr>
<td>P9308</td>
<td>36.5</td>
<td>23.47</td>
</tr>
<tr>
<td>P9721</td>
<td>37.4</td>
<td>23.36</td>
</tr>
<tr>
<td>Average</td>
<td>37.8</td>
<td>25.0</td>
</tr>
</tbody>
</table>

Pioneer Research Station (Normanby) - Trial 4
Location: NORMANBY
Planting Date: 13/10/2013
Harvest Date: 1/04/2014
Days from planting to harvest: 170
Trial Altitude: 117 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0439</td>
<td>36.0</td>
<td>27.16</td>
</tr>
<tr>
<td>P0216</td>
<td>35.7</td>
<td>27.15</td>
</tr>
<tr>
<td>X00G099</td>
<td>38.9</td>
<td>26.31</td>
</tr>
<tr>
<td>P0021</td>
<td>39.3</td>
<td>24.86</td>
</tr>
<tr>
<td>X00H699</td>
<td>36.6</td>
<td>24.82</td>
</tr>
<tr>
<td>35A30</td>
<td>32.8</td>
<td>24.69</td>
</tr>
<tr>
<td>X05E501</td>
<td>36.4</td>
<td>23.30</td>
</tr>
<tr>
<td>36M28</td>
<td>36.8</td>
<td>23.10</td>
</tr>
<tr>
<td>P0247</td>
<td>37.7</td>
<td>22.30</td>
</tr>
<tr>
<td>Average</td>
<td>36.7</td>
<td>24.9</td>
</tr>
</tbody>
</table>

Pioneer Research Station (Normanby) - Trial 5
Location: NORMANBY
Planting Date: 13/10/2013
Harvest Date: 1/04/2014
Days from planting to harvest: 170
Trial Altitude: 117 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0891</td>
<td>33.5</td>
<td>28.36</td>
</tr>
<tr>
<td>P0216</td>
<td>34.0</td>
<td>25.84</td>
</tr>
<tr>
<td>P0439</td>
<td>32.8</td>
<td>24.72</td>
</tr>
<tr>
<td>35A30</td>
<td>32.5</td>
<td>24.47</td>
</tr>
<tr>
<td>P0791</td>
<td>32.4</td>
<td>24.08</td>
</tr>
<tr>
<td>X05E501</td>
<td>36.7</td>
<td>23.49</td>
</tr>
<tr>
<td>Average</td>
<td>33.6</td>
<td>25.2</td>
</tr>
</tbody>
</table>
PIONEER RESEARCH STATION TRIAL RESULTS: LOWER NORTH ISLAND & Taranaki

Pioneer Research Station New Plymouth

- **Location:** NEW PLYMOUTH

Trial 1

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9721</td>
<td>39.0</td>
<td>24.57</td>
</tr>
<tr>
<td>X90J028</td>
<td>48.1</td>
<td>24.28</td>
</tr>
<tr>
<td>P9606</td>
<td>38.1</td>
<td>23.79</td>
</tr>
<tr>
<td>P9911</td>
<td>34.4</td>
<td>23.48</td>
</tr>
<tr>
<td>P9400</td>
<td>42.3</td>
<td>23.14</td>
</tr>
<tr>
<td>X85R216</td>
<td>41.7</td>
<td>20.38</td>
</tr>
<tr>
<td>Average</td>
<td>40.6</td>
<td>23.3</td>
</tr>
</tbody>
</table>

Trial 2

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1253</td>
<td>36.0</td>
<td>26.93</td>
</tr>
<tr>
<td>34P88</td>
<td>36.3</td>
<td>25.66</td>
</tr>
<tr>
<td>P0891</td>
<td>36.2</td>
<td>25.24</td>
</tr>
<tr>
<td>P0791</td>
<td>35.9</td>
<td>24.79</td>
</tr>
<tr>
<td>35A30</td>
<td>35.6</td>
<td>24.62</td>
</tr>
<tr>
<td>P0439</td>
<td>37.0</td>
<td>24.40</td>
</tr>
<tr>
<td>P0216</td>
<td>35.4</td>
<td>24.26</td>
</tr>
<tr>
<td>Average</td>
<td>36.1</td>
<td>25.1</td>
</tr>
</tbody>
</table>

Trial 3

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9911</td>
<td>37.6</td>
<td>25.96</td>
</tr>
<tr>
<td>35A30</td>
<td>36.1</td>
<td>24.97</td>
</tr>
<tr>
<td>P0216</td>
<td>36.1</td>
<td>24.79</td>
</tr>
<tr>
<td>P0439</td>
<td>36.4</td>
<td>24.02</td>
</tr>
<tr>
<td>P9721</td>
<td>36.6</td>
<td>23.83</td>
</tr>
<tr>
<td>P9606</td>
<td>39.0</td>
<td>23.80</td>
</tr>
<tr>
<td>P0247</td>
<td>38.3</td>
<td>22.95</td>
</tr>
<tr>
<td>P0021</td>
<td>37.9</td>
<td>22.18</td>
</tr>
<tr>
<td>Average</td>
<td>37.3</td>
<td>24.0</td>
</tr>
</tbody>
</table>

Trial 4

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9911</td>
<td>37.6</td>
<td>25.56</td>
</tr>
<tr>
<td>35A30</td>
<td>36.1</td>
<td>24.97</td>
</tr>
<tr>
<td>P0216</td>
<td>36.1</td>
<td>24.79</td>
</tr>
<tr>
<td>P0439</td>
<td>36.4</td>
<td>24.02</td>
</tr>
<tr>
<td>P9721</td>
<td>36.6</td>
<td>23.83</td>
</tr>
<tr>
<td>P9606</td>
<td>39.0</td>
<td>23.80</td>
</tr>
<tr>
<td>P0021</td>
<td>37.9</td>
<td>22.18</td>
</tr>
<tr>
<td>Average</td>
<td>37.3</td>
<td>24.0</td>
</tr>
</tbody>
</table>
Amon, Chris

<table>
<thead>
<tr>
<th>Location: WAVERLEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting Date: 7/10/2013</td>
</tr>
<tr>
<td>Harvest Date: 17/03/2014</td>
</tr>
<tr>
<td>Days from planting to harvest: 161</td>
</tr>
<tr>
<td>Trial Altitude: 65 metres</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9400</td>
<td>33.5</td>
<td>22.98</td>
</tr>
<tr>
<td>X90B153</td>
<td>42.9</td>
<td>22.97</td>
</tr>
<tr>
<td>P8805</td>
<td>39.6</td>
<td>22.46</td>
</tr>
<tr>
<td>38V12</td>
<td>35.9</td>
<td>21.99</td>
</tr>
<tr>
<td>P8644</td>
<td>35.6</td>
<td>21.51</td>
</tr>
<tr>
<td>P9308</td>
<td>35.6</td>
<td>21.51</td>
</tr>
<tr>
<td>X85B084</td>
<td>36.8</td>
<td>20.22</td>
</tr>
<tr>
<td>X85C385</td>
<td>40.7</td>
<td>20.20</td>
</tr>
<tr>
<td>Average</td>
<td>37.6</td>
<td>21.8</td>
</tr>
</tbody>
</table>

Bolton, Ross

<table>
<thead>
<tr>
<th>Location: EGMONT VILLAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting Date: 27/10/2013</td>
</tr>
<tr>
<td>Harvest Date: 28/03/2014</td>
</tr>
<tr>
<td>Days from planting to harvest: 152</td>
</tr>
<tr>
<td>Trial Altitude: 170 metres</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38V12</td>
<td>35.3</td>
<td>24.02</td>
</tr>
<tr>
<td>P8805</td>
<td>37.1</td>
<td>23.89</td>
</tr>
<tr>
<td>P9400</td>
<td>33.4</td>
<td>22.51</td>
</tr>
<tr>
<td>X90H035</td>
<td>36.1</td>
<td>22.28</td>
</tr>
<tr>
<td>X85G038</td>
<td>35.5</td>
<td>22.06</td>
</tr>
<tr>
<td>X90J028</td>
<td>38.5</td>
<td>21.93</td>
</tr>
<tr>
<td>X85C385</td>
<td>34.3</td>
<td>21.69</td>
</tr>
<tr>
<td>X90C526</td>
<td>35.3</td>
<td>21.58</td>
</tr>
<tr>
<td>Average</td>
<td>35.7</td>
<td>22.5</td>
</tr>
</tbody>
</table>

Bourke, Eddie

<table>
<thead>
<tr>
<th>Location: HAWERA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting Date: 24/10/2013</td>
</tr>
<tr>
<td>Harvest Date: 29/04/2014</td>
</tr>
<tr>
<td>Days from planting to harvest: 187</td>
</tr>
<tr>
<td>Trial Altitude: 128 metres</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0891</td>
<td>37.2</td>
<td>25.85</td>
</tr>
<tr>
<td>P9911</td>
<td>40.2</td>
<td>25.02</td>
</tr>
<tr>
<td>P0021</td>
<td>44.6</td>
<td>24.30</td>
</tr>
<tr>
<td>P0439</td>
<td>40.8</td>
<td>23.86</td>
</tr>
<tr>
<td>36M28</td>
<td>38.8</td>
<td>23.54</td>
</tr>
<tr>
<td>P0791</td>
<td>36.9</td>
<td>22.97</td>
</tr>
<tr>
<td>P0247</td>
<td>41.7</td>
<td>22.46</td>
</tr>
<tr>
<td>P9606</td>
<td>45.4</td>
<td>20.45</td>
</tr>
<tr>
<td>Average</td>
<td>40.7</td>
<td>23.6</td>
</tr>
</tbody>
</table>

Bunn, Karl

<table>
<thead>
<tr>
<th>Location: MIDHURST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting Date: 4/11/2013</td>
</tr>
<tr>
<td>Harvest Date: 15/04/2014</td>
</tr>
<tr>
<td>Days from planting to harvest: 162</td>
</tr>
<tr>
<td>Trial Altitude: 368 metres</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X80C957</td>
<td>32.0</td>
<td>17.86</td>
</tr>
<tr>
<td>P8805</td>
<td>29.6</td>
<td>16.61</td>
</tr>
<tr>
<td>X85E012</td>
<td>26.1</td>
<td>15.37</td>
</tr>
<tr>
<td>39V43</td>
<td>33.3</td>
<td>15.47</td>
</tr>
<tr>
<td>P7709</td>
<td>37.5</td>
<td>15.24</td>
</tr>
<tr>
<td>39T45</td>
<td>32.2</td>
<td>15.15</td>
</tr>
<tr>
<td>X80A430</td>
<td>29.7</td>
<td>15.08</td>
</tr>
<tr>
<td>P7524</td>
<td>33.0</td>
<td>14.94</td>
</tr>
<tr>
<td>P0247</td>
<td>35.3</td>
<td>14.82</td>
</tr>
<tr>
<td>Average</td>
<td>33.6</td>
<td>15.2</td>
</tr>
</tbody>
</table>

Butler, Alan

<table>
<thead>
<tr>
<th>Location: STRATFORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting Date: 3/11/2013</td>
</tr>
<tr>
<td>Harvest Date: 15/04/2014</td>
</tr>
<tr>
<td>Days from planting to harvest: 163</td>
</tr>
<tr>
<td>Trial Altitude: 370 metres</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8000</td>
<td>35.3</td>
<td>18.64</td>
</tr>
<tr>
<td>39G12</td>
<td>32.6</td>
<td>18.60</td>
</tr>
<tr>
<td>P7524</td>
<td>33.0</td>
<td>18.45</td>
</tr>
<tr>
<td>X85E012</td>
<td>29.9</td>
<td>18.24</td>
</tr>
<tr>
<td>39V43</td>
<td>34.8</td>
<td>18.21</td>
</tr>
<tr>
<td>39T45</td>
<td>34.3</td>
<td>18.65</td>
</tr>
<tr>
<td>X80A430</td>
<td>32.0</td>
<td>16.74</td>
</tr>
<tr>
<td>P7709</td>
<td>33.0</td>
<td>15.48</td>
</tr>
<tr>
<td>Average</td>
<td>33.1</td>
<td>17.7</td>
</tr>
</tbody>
</table>

Chapman Onion Exports Ltd

<table>
<thead>
<tr>
<th>Location: WAIPUKARAU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting Date: 28/10/2013</td>
</tr>
<tr>
<td>Harvest Date: 15/04/2014</td>
</tr>
<tr>
<td>Days from planting to harvest: 169</td>
</tr>
<tr>
<td>Trial Altitude: 177 metres</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9721</td>
<td>38.5</td>
<td>22.72</td>
</tr>
<tr>
<td>P0021</td>
<td>35.1</td>
<td>22.33</td>
</tr>
<tr>
<td>P8805</td>
<td>42.3</td>
<td>21.99</td>
</tr>
<tr>
<td>P9911</td>
<td>36.4</td>
<td>21.90</td>
</tr>
<tr>
<td>38V12</td>
<td>37.1</td>
<td>21.80</td>
</tr>
<tr>
<td>37Y12</td>
<td>39.5</td>
<td>21.16</td>
</tr>
<tr>
<td>P9400</td>
<td>38.5</td>
<td>20.96</td>
</tr>
<tr>
<td>X95E098</td>
<td>35.4</td>
<td>20.11</td>
</tr>
<tr>
<td>Average</td>
<td>37.8</td>
<td>21.6</td>
</tr>
</tbody>
</table>
INDIVIDUAL FARMER TRIAL RESULTS: LOWER NORTH ISLAND & TARANAKI

Christie, Dallis

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8025</td>
<td>37.2</td>
<td>24.81</td>
</tr>
<tr>
<td>X80C957</td>
<td>36.4</td>
<td>24.07</td>
</tr>
<tr>
<td>P8000</td>
<td>35.5</td>
<td>23.77</td>
</tr>
<tr>
<td>P7524</td>
<td>38.9</td>
<td>22.88</td>
</tr>
<tr>
<td>P8805</td>
<td>32.5</td>
<td>22.57</td>
</tr>
<tr>
<td>P7709</td>
<td>37.9</td>
<td>22.55</td>
</tr>
<tr>
<td>X85C384</td>
<td>32.8</td>
<td>22.13</td>
</tr>
<tr>
<td>X80B419</td>
<td>36.3</td>
<td>22.12</td>
</tr>
<tr>
<td>X80A430</td>
<td>37.0</td>
<td>22.11</td>
</tr>
<tr>
<td>39G12</td>
<td>34.0</td>
<td>21.04</td>
</tr>
<tr>
<td>39V43</td>
<td>41.4</td>
<td>19.88</td>
</tr>
<tr>
<td>Average</td>
<td>36.3</td>
<td>22.5</td>
</tr>
</tbody>
</table>

Dalrymple, Hew - Trial 1

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8025</td>
<td>37.2</td>
<td>24.81</td>
</tr>
<tr>
<td>X85G038</td>
<td>38.1</td>
<td>24.00</td>
</tr>
<tr>
<td>P8805</td>
<td>36.3</td>
<td>23.84</td>
</tr>
<tr>
<td>P9606</td>
<td>32.4</td>
<td>22.72</td>
</tr>
<tr>
<td>Average</td>
<td>35.1</td>
<td>23.8</td>
</tr>
</tbody>
</table>

Dalrymple, Hew - Trial 2

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9111</td>
<td>37.5</td>
<td>24.10</td>
</tr>
<tr>
<td>P0021</td>
<td>38.0</td>
<td>23.86</td>
</tr>
<tr>
<td>X00C211</td>
<td>42.4</td>
<td>23.78</td>
</tr>
<tr>
<td>P9900</td>
<td>42.9</td>
<td>23.74</td>
</tr>
<tr>
<td>P9400</td>
<td>41.4</td>
<td>23.21</td>
</tr>
<tr>
<td>P9721</td>
<td>42.5</td>
<td>22.94</td>
</tr>
<tr>
<td>X90C526</td>
<td>37.3</td>
<td>21.49</td>
</tr>
<tr>
<td>Average</td>
<td>40.3</td>
<td>23.3</td>
</tr>
</tbody>
</table>

Dravitzki, Karl

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38V12</td>
<td>37.9</td>
<td>22.41</td>
</tr>
<tr>
<td>P8805</td>
<td>41.1</td>
<td>22.09</td>
</tr>
<tr>
<td>X85C385</td>
<td>41.5</td>
<td>21.54</td>
</tr>
<tr>
<td>X90B216</td>
<td>36.9</td>
<td>21.14</td>
</tr>
<tr>
<td>P9308</td>
<td>36.5</td>
<td>21.12</td>
</tr>
<tr>
<td>P9400</td>
<td>35.9</td>
<td>21.06</td>
</tr>
<tr>
<td>P8589</td>
<td>40.1</td>
<td>20.41</td>
</tr>
<tr>
<td>39F58</td>
<td>36.7</td>
<td>20.17</td>
</tr>
<tr>
<td>Average</td>
<td>38.3</td>
<td>21.2</td>
</tr>
</tbody>
</table>

Dowdle, Paul

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38V12</td>
<td>42.7</td>
<td>23.18</td>
</tr>
<tr>
<td>P8644</td>
<td>40.2</td>
<td>22.97</td>
</tr>
<tr>
<td>X85C385</td>
<td>41.0</td>
<td>22.61</td>
</tr>
<tr>
<td>P8589</td>
<td>41.9</td>
<td>22.03</td>
</tr>
<tr>
<td>X85B084</td>
<td>40.3</td>
<td>20.55</td>
</tr>
<tr>
<td>X90B153</td>
<td>41.0</td>
<td>20.40</td>
</tr>
<tr>
<td>P8805</td>
<td>40.5</td>
<td>19.95</td>
</tr>
<tr>
<td>X90B216</td>
<td>37.4</td>
<td>19.62</td>
</tr>
<tr>
<td>Average</td>
<td>40.6</td>
<td>21.4</td>
</tr>
</tbody>
</table>

Dunrobin Farms (Phil Gray)

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0021</td>
<td>37.6</td>
<td>27.03</td>
</tr>
<tr>
<td>P9911</td>
<td>34.9</td>
<td>26.60</td>
</tr>
<tr>
<td>P9308</td>
<td>39.5</td>
<td>25.29</td>
</tr>
<tr>
<td>P9400</td>
<td>36.7</td>
<td>25.14</td>
</tr>
<tr>
<td>38H20</td>
<td>39.4</td>
<td>25.06</td>
</tr>
<tr>
<td>X90C526</td>
<td>40.6</td>
<td>25.02</td>
</tr>
<tr>
<td>P0247</td>
<td>36.8</td>
<td>24.44</td>
</tr>
<tr>
<td>X00C211</td>
<td>38.8</td>
<td>23.77</td>
</tr>
<tr>
<td>Average</td>
<td>38.0</td>
<td>25.3</td>
</tr>
</tbody>
</table>
Funnel, Kristan
- **Location:** OPIKI
- **Planting Date:** 3/10/2013
- **Harvest Date:** 17/02/2014
- **Days from planting to harvest:** 137
- **Trial Altitude:** 3 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X80B419</td>
<td>33.4</td>
<td>26.80</td>
</tr>
<tr>
<td>X80C957</td>
<td>32.8</td>
<td>26.33</td>
</tr>
<tr>
<td>P8000</td>
<td>33.1</td>
<td>26.12</td>
</tr>
<tr>
<td>39V43</td>
<td>36.6</td>
<td>25.68</td>
</tr>
<tr>
<td>P7524</td>
<td>36.1</td>
<td>24.95</td>
</tr>
<tr>
<td>X80A430</td>
<td>36.7</td>
<td>24.62</td>
</tr>
<tr>
<td>39G12</td>
<td>33.6</td>
<td>24.36</td>
</tr>
<tr>
<td>P7709</td>
<td>33.0</td>
<td>21.11</td>
</tr>
<tr>
<td>Average</td>
<td>34.4</td>
<td>25.0</td>
</tr>
</tbody>
</table>

Goodin, Tom & Lyn
- **Location:** OKATO
- **Planting Date:** 25/10/2013
- **Harvest Date:** 19/03/2014
- **Days from planting to harvest:** 145
- **Trial Altitude:** 43 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9400</td>
<td>35.3</td>
<td>28.48</td>
</tr>
<tr>
<td>38V12</td>
<td>36.5</td>
<td>27.57</td>
</tr>
<tr>
<td>P9721</td>
<td>36.0</td>
<td>25.91</td>
</tr>
<tr>
<td>P9606</td>
<td>33.9</td>
<td>24.81</td>
</tr>
<tr>
<td>P0021</td>
<td>32.8</td>
<td>23.82</td>
</tr>
<tr>
<td>X90C526</td>
<td>35.0</td>
<td>23.20</td>
</tr>
<tr>
<td>Average</td>
<td>35.7</td>
<td>26.0</td>
</tr>
</tbody>
</table>

Geary, Alistair
- **Location:** PATEA
- **Planting Date:** 20/10/2013
- **Harvest Date:** 30/03/2014
- **Days from planting to harvest:** 161
- **Trial Altitude:** 86 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9040</td>
<td>35.3</td>
<td>28.51</td>
</tr>
<tr>
<td>38V12</td>
<td>36.5</td>
<td>28.04</td>
</tr>
<tr>
<td>P9721</td>
<td>31.7</td>
<td>26.72</td>
</tr>
<tr>
<td>P9911</td>
<td>31.6</td>
<td>26.66</td>
</tr>
<tr>
<td>X90C526</td>
<td>40.8</td>
<td>26.37</td>
</tr>
<tr>
<td>P0021</td>
<td>34.1</td>
<td>25.27</td>
</tr>
<tr>
<td>P9606</td>
<td>32.6</td>
<td>25.26</td>
</tr>
<tr>
<td>Average</td>
<td>34.7</td>
<td>26.7</td>
</tr>
</tbody>
</table>

Gwynn, David
- **Location:** KAKARAMEA
- **Planting Date:** 30/10/2013
- **Harvest Date:** 4/04/2014
- **Days from planting to harvest:** 156
- **Trial Altitude:** 107 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8805</td>
<td>42.3</td>
<td>23.46</td>
</tr>
<tr>
<td>38V12</td>
<td>35.7</td>
<td>22.81</td>
</tr>
<tr>
<td>P6644</td>
<td>39.0</td>
<td>22.44</td>
</tr>
<tr>
<td>P9911</td>
<td>29.3</td>
<td>22.14</td>
</tr>
<tr>
<td>X90B153</td>
<td>42.6</td>
<td>22.12</td>
</tr>
<tr>
<td>P9400</td>
<td>33.7</td>
<td>21.11</td>
</tr>
<tr>
<td>P9040</td>
<td>35.3</td>
<td>20.87</td>
</tr>
<tr>
<td>38H20</td>
<td>35.1</td>
<td>20.60</td>
</tr>
<tr>
<td>X85C385</td>
<td>35.9</td>
<td>19.12</td>
</tr>
<tr>
<td>Average</td>
<td>36.5</td>
<td>21.6</td>
</tr>
</tbody>
</table>

Haigh, Doug
- **Location:** OPUNAKE
- **Planting Date:** 5/11/2013
- **Harvest Date:** 25/03/2014
- **Days from planting to harvest:** 140
- **Trial Altitude:** 130 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8805</td>
<td>33.9</td>
<td>17.57</td>
</tr>
<tr>
<td>P8589</td>
<td>33.2</td>
<td>17.20</td>
</tr>
<tr>
<td>X85C384</td>
<td>31.2</td>
<td>17.18</td>
</tr>
<tr>
<td>X85C804</td>
<td>33.4</td>
<td>16.82</td>
</tr>
<tr>
<td>38V12</td>
<td>30.2</td>
<td>16.37</td>
</tr>
<tr>
<td>P8644</td>
<td>28.3</td>
<td>16.34</td>
</tr>
<tr>
<td>P7709</td>
<td>34.0</td>
<td>15.77</td>
</tr>
<tr>
<td>39T45</td>
<td>35.0</td>
<td>15.55</td>
</tr>
<tr>
<td>X85C385</td>
<td>27.9</td>
<td>14.86</td>
</tr>
<tr>
<td>Average</td>
<td>31.7</td>
<td>16.2</td>
</tr>
</tbody>
</table>

Handyside, Rupert
- **Location:** MARTINBOROUGH
- **Planting Date:** 27/10/2013
- **Harvest Date:** 27/03/2014
- **Days from planting to harvest:** 151
- **Trial Altitude:** 23 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X00G099</td>
<td>36.0</td>
<td>29.17</td>
</tr>
<tr>
<td>P9900</td>
<td>36.2</td>
<td>27.04</td>
</tr>
<tr>
<td>P9721</td>
<td>36.7</td>
<td>26.98</td>
</tr>
<tr>
<td>P9606</td>
<td>36.7</td>
<td>26.95</td>
</tr>
<tr>
<td>P0021</td>
<td>36.2</td>
<td>25.89</td>
</tr>
<tr>
<td>P9400</td>
<td>38.3</td>
<td>25.70</td>
</tr>
<tr>
<td>X00C208</td>
<td>34.6</td>
<td>25.07</td>
</tr>
<tr>
<td>X95F990</td>
<td>36.6</td>
<td>25.02</td>
</tr>
<tr>
<td>P9911</td>
<td>35.2</td>
<td>24.27</td>
</tr>
<tr>
<td>X00C211</td>
<td>36.2</td>
<td>23.55</td>
</tr>
<tr>
<td>Average</td>
<td>36.3</td>
<td>26.0</td>
</tr>
</tbody>
</table>
INDIVIDUAL FARMER TRIAL RESULTS: LOWER NORTH ISLAND & TARANAKI

Hanser, Brian

Location: Pukearuhe
Planting Date: 10/10/2013
Harvest Date: 13/03/2014
Days from planting to harvest: 154
Trial Altitude: 53 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9911</td>
<td>36.4</td>
<td>26.24</td>
</tr>
<tr>
<td>P0439</td>
<td>34.4</td>
<td>25.85</td>
</tr>
<tr>
<td>P0021</td>
<td>38.3</td>
<td>25.68</td>
</tr>
<tr>
<td>36M28</td>
<td>36.8</td>
<td>25.03</td>
</tr>
<tr>
<td>P9721</td>
<td>35.8</td>
<td>24.85</td>
</tr>
<tr>
<td>P0216</td>
<td>36.6</td>
<td>23.97</td>
</tr>
<tr>
<td>P9400</td>
<td>40.3</td>
<td>23.37</td>
</tr>
<tr>
<td>P9606</td>
<td>37.8</td>
<td>23.19</td>
</tr>
<tr>
<td>Average</td>
<td>37.1</td>
<td>24.8</td>
</tr>
</tbody>
</table>

Jury, David

Location: Waitara
Planting Date: 5/10/2013
Harvest Date: 11/03/2014
Days from planting to harvest: 157
Trial Altitude: 60 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9308</td>
<td>39.5</td>
<td>25.75</td>
</tr>
<tr>
<td>P9721</td>
<td>34.9</td>
<td>24.91</td>
</tr>
<tr>
<td>P9606</td>
<td>37.0</td>
<td>24.85</td>
</tr>
<tr>
<td>P0021</td>
<td>32.8</td>
<td>24.42</td>
</tr>
<tr>
<td>P0247</td>
<td>34.5</td>
<td>24.35</td>
</tr>
<tr>
<td>P9400</td>
<td>37.3</td>
<td>24.33</td>
</tr>
<tr>
<td>Average</td>
<td>36.0</td>
<td>24.8</td>
</tr>
</tbody>
</table>

Judd, Walter

Location: Marton
Planting Date: 16/11/2013
Harvest Date: 19/03/2014
Days from planting to harvest: 123
Trial Altitude: 96 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X85C384</td>
<td>38.1</td>
<td>19.14</td>
</tr>
<tr>
<td>38V12</td>
<td>35.0</td>
<td>19.07</td>
</tr>
<tr>
<td>X85C385</td>
<td>35.6</td>
<td>18.94</td>
</tr>
<tr>
<td>X85B084</td>
<td>35.3</td>
<td>18.79</td>
</tr>
<tr>
<td>P8644</td>
<td>32.6</td>
<td>18.43</td>
</tr>
<tr>
<td>P8805</td>
<td>36.2</td>
<td>17.68</td>
</tr>
<tr>
<td>P8589</td>
<td>33.5</td>
<td>17.56</td>
</tr>
<tr>
<td>X90B153</td>
<td>35.1</td>
<td>16.90</td>
</tr>
<tr>
<td>Average</td>
<td>35.2</td>
<td>18.3</td>
</tr>
</tbody>
</table>

Kershaw, Richard

Location: Martinborough
Planting Date: 9/11/2013
Harvest Date: 2/04/2014
Days from planting to harvest: 144
Trial Altitude: 36 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0021</td>
<td>38.0</td>
<td>25.35</td>
</tr>
<tr>
<td>P0247</td>
<td>37.4</td>
<td>25.10</td>
</tr>
<tr>
<td>P9606</td>
<td>35.3</td>
<td>24.88</td>
</tr>
<tr>
<td>P0216</td>
<td>32.8</td>
<td>24.76</td>
</tr>
<tr>
<td>X00C211</td>
<td>37.3</td>
<td>24.69</td>
</tr>
<tr>
<td>X02V326</td>
<td>34.8</td>
<td>23.60</td>
</tr>
<tr>
<td>P9400</td>
<td>37.2</td>
<td>23.54</td>
</tr>
<tr>
<td>P9911</td>
<td>36.4</td>
<td>23.52</td>
</tr>
<tr>
<td>X00H699</td>
<td>34.2</td>
<td>23.23</td>
</tr>
<tr>
<td>Average</td>
<td>35.9</td>
<td>24.3</td>
</tr>
</tbody>
</table>

Kissick, Bede

Location: Hawera
Planting Date: 18/10/2013
Harvest Date: 27/03/2014
Days from planting to harvest: 160
Trial Altitude: 158 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8589</td>
<td>33.3</td>
<td>27.72</td>
</tr>
<tr>
<td>X90B153</td>
<td>35.6</td>
<td>27.00</td>
</tr>
<tr>
<td>P8644</td>
<td>33.2</td>
<td>25.95</td>
</tr>
<tr>
<td>X85C384</td>
<td>39.0</td>
<td>25.51</td>
</tr>
<tr>
<td>X85C385</td>
<td>35.2</td>
<td>25.38</td>
</tr>
<tr>
<td>39F58</td>
<td>32.0</td>
<td>25.14</td>
</tr>
<tr>
<td>38V12</td>
<td>31.1</td>
<td>24.71</td>
</tr>
<tr>
<td>X85B084</td>
<td>35.5</td>
<td>23.76</td>
</tr>
<tr>
<td>Average</td>
<td>34.4</td>
<td>25.6</td>
</tr>
</tbody>
</table>

Knowles, Chris & Stevens, Amy

Location: Tariki
Planting Date: 27/10/2013
Harvest Date: 7/04/2014
Days from planting to harvest: 162
Trial Altitude: 285 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38V12</td>
<td>31.8</td>
<td>21.96</td>
</tr>
<tr>
<td>P8644</td>
<td>31.1</td>
<td>21.65</td>
</tr>
<tr>
<td>P8589</td>
<td>30.8</td>
<td>21.12</td>
</tr>
<tr>
<td>P9400</td>
<td>28.9</td>
<td>20.90</td>
</tr>
<tr>
<td>X90B153</td>
<td>34.2</td>
<td>19.92</td>
</tr>
<tr>
<td>X90C526</td>
<td>31.5</td>
<td>19.84</td>
</tr>
<tr>
<td>X90B216</td>
<td>29.4</td>
<td>19.00</td>
</tr>
<tr>
<td>X85B084</td>
<td>33.6</td>
<td>18.30</td>
</tr>
<tr>
<td>Average</td>
<td>31.4</td>
<td>20.3</td>
</tr>
</tbody>
</table>
Landcorp (Horowhenua)

Location: **FOXTON**
Planting Date: 26/10/2013
Harvest Date: 22/03/2014
Days from planting to harvest: 147
Trial Altitude: 1 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38V12</td>
<td>40.4</td>
<td>29.77</td>
</tr>
<tr>
<td>P8805</td>
<td>45.2</td>
<td>29.38</td>
</tr>
<tr>
<td>X85C385</td>
<td>40.5</td>
<td>28.34</td>
</tr>
<tr>
<td>P8644</td>
<td>39.6</td>
<td>28.01</td>
</tr>
<tr>
<td>38H20</td>
<td>38.2</td>
<td>27.66</td>
</tr>
<tr>
<td>X90B153</td>
<td>42.7</td>
<td>26.47</td>
</tr>
<tr>
<td>X85B084</td>
<td>39.4</td>
<td>25.14</td>
</tr>
<tr>
<td>Average</td>
<td>40.7</td>
<td>26.9</td>
</tr>
</tbody>
</table>

Malcolm, David

Location: **HAWKES BAY**
Planting Date: 24/10/2013
Harvest Date: 12/03/2014
Days from planting to harvest: 139
Trial Altitude: 119 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X85C384</td>
<td>39.6</td>
<td>26.80</td>
</tr>
<tr>
<td>39T45</td>
<td>36.8</td>
<td>26.72</td>
</tr>
<tr>
<td>39G12</td>
<td>37.8</td>
<td>25.57</td>
</tr>
<tr>
<td>38V12</td>
<td>35.3</td>
<td>22.67</td>
</tr>
<tr>
<td>P8000</td>
<td>41.0</td>
<td>22.62</td>
</tr>
<tr>
<td>P8025</td>
<td>39.8</td>
<td>22.38</td>
</tr>
<tr>
<td>Average</td>
<td>38.4</td>
<td>24.5</td>
</tr>
</tbody>
</table>

Lynskey, Craig & Kim

Location: **OPUNAKE**
Planting Date: 6/10/2013
Harvest Date: 26/03/2014
Days from planting to harvest: 171
Trial Altitude: 81 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9721</td>
<td>37.2</td>
<td>27.10</td>
</tr>
<tr>
<td>P9911</td>
<td>36.3</td>
<td>26.54</td>
</tr>
<tr>
<td>P0247</td>
<td>38.1</td>
<td>25.52</td>
</tr>
<tr>
<td>P9308</td>
<td>39.1</td>
<td>25.09</td>
</tr>
<tr>
<td>P9400</td>
<td>40.4</td>
<td>24.75</td>
</tr>
<tr>
<td>P0021</td>
<td>36.2</td>
<td>23.31</td>
</tr>
<tr>
<td>P0216</td>
<td>32.5</td>
<td>22.26</td>
</tr>
<tr>
<td>P9606</td>
<td>35.6</td>
<td>21.23</td>
</tr>
<tr>
<td>Average</td>
<td>36.9</td>
<td>24.5</td>
</tr>
</tbody>
</table>

Miles, Shane (PKW Incorporation)

Location: **OKAIWA**
Planting Date: 10/10/2013
Harvest Date: 30/03/2014
Days from planting to harvest: 171
Trial Altitude: 117 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9400</td>
<td>35.6</td>
<td>24.49</td>
</tr>
<tr>
<td>35A30</td>
<td>33.7</td>
<td>24.23</td>
</tr>
<tr>
<td>P0021</td>
<td>34.3</td>
<td>23.01</td>
</tr>
<tr>
<td>P9606</td>
<td>35.7</td>
<td>22.11</td>
</tr>
<tr>
<td>P0439</td>
<td>32.6</td>
<td>21.61</td>
</tr>
<tr>
<td>P9721</td>
<td>35.8</td>
<td>21.57</td>
</tr>
<tr>
<td>P9308</td>
<td>35.0</td>
<td>21.25</td>
</tr>
<tr>
<td>P9911</td>
<td>31.4</td>
<td>21.10</td>
</tr>
<tr>
<td>Average</td>
<td>34.3</td>
<td>22.4</td>
</tr>
</tbody>
</table>

Moffitt, Ross & Gloria

Location: **EGMONT VILLAGE**
Planting Date: 2/12/2013
Harvest Date: 22/04/2014
Days from planting to harvest: 141
Trial Altitude: 374 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X80C957</td>
<td>28.5</td>
<td>14.77</td>
</tr>
<tr>
<td>39T45</td>
<td>31.1</td>
<td>14.59</td>
</tr>
<tr>
<td>P7524</td>
<td>32.5</td>
<td>14.50</td>
</tr>
<tr>
<td>P8000</td>
<td>30.6</td>
<td>14.47</td>
</tr>
<tr>
<td>39G12</td>
<td>33.6</td>
<td>14.45</td>
</tr>
<tr>
<td>X80A430</td>
<td>30.2</td>
<td>13.76</td>
</tr>
<tr>
<td>39V43</td>
<td>31.6</td>
<td>12.76</td>
</tr>
<tr>
<td>X85C384</td>
<td>25.7</td>
<td>12.44</td>
</tr>
<tr>
<td>Average</td>
<td>30.5</td>
<td>14.0</td>
</tr>
</tbody>
</table>

Murdoch, Alistair

Location: **HAWERA**
Planting Date: 2/10/2013
Harvest Date: 27/02/2014
Days from planting to harvest: 148
Trial Altitude: 49 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8000</td>
<td>33.7</td>
<td>26.08</td>
</tr>
<tr>
<td>X80B419</td>
<td>29.3</td>
<td>23.94</td>
</tr>
<tr>
<td>X80C957</td>
<td>31.6</td>
<td>22.94</td>
</tr>
<tr>
<td>X85C384</td>
<td>31.2</td>
<td>22.82</td>
</tr>
<tr>
<td>P7709</td>
<td>32.9</td>
<td>22.02</td>
</tr>
<tr>
<td>P7524</td>
<td>33.8</td>
<td>21.96</td>
</tr>
<tr>
<td>X85E012</td>
<td>31.8</td>
<td>21.70</td>
</tr>
<tr>
<td>39G12</td>
<td>28.4</td>
<td>21.34</td>
</tr>
<tr>
<td>39V43</td>
<td>35.2</td>
<td>20.39</td>
</tr>
<tr>
<td>Average</td>
<td>32.0</td>
<td>22.6</td>
</tr>
</tbody>
</table>
INDIVIDUAL FARMER TRIAL RESULTS: LOWER NORTH ISLAND & TARANAKI

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Planting Date</th>
<th>Harvest Date</th>
<th>Days from planting to harvest</th>
<th>Trial Altitude</th>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patrick, Bruce</td>
<td>MASTERTON</td>
<td>26/10/2013</td>
<td>19/03/2014</td>
<td>144</td>
<td>72 metres</td>
<td>P0021</td>
<td>38.1</td>
<td>29.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38V12</td>
<td>43.8</td>
<td>28.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P9911</td>
<td>35.2</td>
<td>26.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P9721</td>
<td>38.5</td>
<td>26.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P9400</td>
<td>40.8</td>
<td>24.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X00G960</td>
<td>38.2</td>
<td>23.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P8805</td>
<td>43.4</td>
<td>22.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>39.7</td>
<td>26.0</td>
</tr>
<tr>
<td>Poole, Rob & Clare</td>
<td>OPUNAKE</td>
<td>3/10/2013</td>
<td>20/03/2014</td>
<td>168</td>
<td>85 metres</td>
<td>38V12</td>
<td>35.7</td>
<td>27.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P8644</td>
<td>36.3</td>
<td>27.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P9308</td>
<td>32.4</td>
<td>26.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P8589</td>
<td>36.1</td>
<td>26.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P9400</td>
<td>33.5</td>
<td>25.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X85B084</td>
<td>40.0</td>
<td>25.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X85C385</td>
<td>36.7</td>
<td>23.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X90B153</td>
<td>34.4</td>
<td>22.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>35.6</td>
<td>25.5</td>
</tr>
<tr>
<td>Quinn, John</td>
<td>CARTERTON</td>
<td>15/11/2013</td>
<td>19/04/2014</td>
<td>155</td>
<td>47 metres</td>
<td>38H20</td>
<td>35.2</td>
<td>26.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P7524</td>
<td>38.5</td>
<td>24.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38V12</td>
<td>36.1</td>
<td>24.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X90B216</td>
<td>35.8</td>
<td>24.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P8805</td>
<td>33.5</td>
<td>23.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P7709</td>
<td>37.5</td>
<td>21.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39V43</td>
<td>38.3</td>
<td>20.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>36.4</td>
<td>23.5</td>
</tr>
<tr>
<td>Penwarden, Tony</td>
<td>WAITARA</td>
<td>15/10/2013</td>
<td>14/03/2014</td>
<td>150</td>
<td>72 metres</td>
<td>P9400</td>
<td>36.6</td>
<td>28.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P0021</td>
<td>36.8</td>
<td>27.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P9911</td>
<td>33.4</td>
<td>27.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P9308</td>
<td>38.2</td>
<td>27.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38V12</td>
<td>37.0</td>
<td>26.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X90B216</td>
<td>38.8</td>
<td>25.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P9606</td>
<td>33.3</td>
<td>25.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P9721</td>
<td>32.3</td>
<td>25.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>35.8</td>
<td>26.7</td>
</tr>
<tr>
<td>Powell, Martin</td>
<td>TE ROTI</td>
<td>6/10/2013</td>
<td>11/04/2014</td>
<td>187</td>
<td>146 metres</td>
<td>38H20</td>
<td>38.0</td>
<td>22.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X90B153</td>
<td>35.8</td>
<td>21.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P8805</td>
<td>37.4</td>
<td>21.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X85C384</td>
<td>40.0</td>
<td>20.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P8644</td>
<td>37.5</td>
<td>20.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P8589</td>
<td>37.6</td>
<td>20.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X90C526</td>
<td>38.0</td>
<td>20.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38V12</td>
<td>33.1</td>
<td>19.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>37.2</td>
<td>20.8</td>
</tr>
<tr>
<td>Sims, Robert</td>
<td>OTAKI</td>
<td>27/11/2013</td>
<td>23/04/2014</td>
<td>147</td>
<td>14 metres</td>
<td>38H20</td>
<td>38.0</td>
<td>22.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X90B153</td>
<td>35.8</td>
<td>21.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P8805</td>
<td>37.4</td>
<td>21.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X85C384</td>
<td>40.0</td>
<td>20.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P8644</td>
<td>37.5</td>
<td>20.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P8589</td>
<td>37.6</td>
<td>20.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X90C526</td>
<td>38.0</td>
<td>20.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38V12</td>
<td>33.1</td>
<td>19.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>37.2</td>
<td>20.8</td>
</tr>
</tbody>
</table>
INDIVIDUAL FARMER TRIAL RESULTS: LOWER NORTH ISLAND & Taranaki

Spiers, Ian
- **Location:** FOXTON
- **Planting Date:** 5/11/2013
- **Harvest Date:** 28/03/2014
- **Days from planting to harvest:** 143
- **Trial Altitude:** 4 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0021</td>
<td>36.0</td>
<td>23.62</td>
</tr>
<tr>
<td>P9911</td>
<td>30.7</td>
<td>22.98</td>
</tr>
<tr>
<td>P0216</td>
<td>32.9</td>
<td>22.57</td>
</tr>
<tr>
<td>X00C211</td>
<td>35.4</td>
<td>21.60</td>
</tr>
<tr>
<td>P9721</td>
<td>35.6</td>
<td>21.10</td>
</tr>
<tr>
<td>P9400</td>
<td>37.6</td>
<td>20.69</td>
</tr>
<tr>
<td>P0247</td>
<td>37.9</td>
<td>20.31</td>
</tr>
<tr>
<td>P9606</td>
<td>38.2</td>
<td>18.54</td>
</tr>
<tr>
<td>Average</td>
<td>35.6</td>
<td>21.4</td>
</tr>
</tbody>
</table>

Taylor, Aaron
- **Location:** SANSON
- **Planting Date:** 1/11/2013
- **Harvest Date:** 28/03/2014
- **Days from planting to harvest:** 143
- **Trial Altitude:** 16 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38V12</td>
<td>42.7</td>
<td>26.82</td>
</tr>
<tr>
<td>X00C211</td>
<td>35.6</td>
<td>26.46</td>
</tr>
<tr>
<td>P0021</td>
<td>37.1</td>
<td>26.39</td>
</tr>
<tr>
<td>X90C526</td>
<td>40.2</td>
<td>25.94</td>
</tr>
<tr>
<td>P9400</td>
<td>39.9</td>
<td>25.07</td>
</tr>
<tr>
<td>P9721</td>
<td>35.2</td>
<td>24.86</td>
</tr>
<tr>
<td>P9911</td>
<td>33.9</td>
<td>22.54</td>
</tr>
<tr>
<td>P9606</td>
<td>36.0</td>
<td>22.03</td>
</tr>
<tr>
<td>P0247</td>
<td>34.3</td>
<td>21.88</td>
</tr>
<tr>
<td>P8805</td>
<td>41.2</td>
<td>20.07</td>
</tr>
<tr>
<td>Average</td>
<td>37.6</td>
<td>24.2</td>
</tr>
</tbody>
</table>

Sutherland, Toby
- **Location:** MARTINBOROUGH
- **Planting Date:** 18/11/2013
- **Harvest Date:** 24/04/2014
- **Days from planting to harvest:** 157
- **Trial Altitude:** 14 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8805</td>
<td>48.3</td>
<td>21.34</td>
</tr>
<tr>
<td>P0021</td>
<td>44.0</td>
<td>20.55</td>
</tr>
<tr>
<td>38H20</td>
<td>45.7</td>
<td>20.11</td>
</tr>
<tr>
<td>P9721</td>
<td>43.1</td>
<td>20.11</td>
</tr>
<tr>
<td>38V12</td>
<td>46.8</td>
<td>19.88</td>
</tr>
<tr>
<td>X00C960</td>
<td>41.0</td>
<td>18.98</td>
</tr>
<tr>
<td>P9400</td>
<td>44.1</td>
<td>18.65</td>
</tr>
<tr>
<td>X85B084</td>
<td>48.0</td>
<td>18.77</td>
</tr>
<tr>
<td>X95F990</td>
<td>41.9</td>
<td>18.28</td>
</tr>
<tr>
<td>Average</td>
<td>44.8</td>
<td>19.7</td>
</tr>
</tbody>
</table>

Thompson, Chris
- **Location:** KUMEROA
- **Planting Date:** 23/11/2013
- **Harvest Date:** 15/04/2014
- **Days from planting to harvest:** 143
- **Trial Altitude:** 156 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8805</td>
<td>36.2</td>
<td>21.46</td>
</tr>
<tr>
<td>38V12</td>
<td>35.1</td>
<td>20.70</td>
</tr>
<tr>
<td>P9606</td>
<td>31.6</td>
<td>20.17</td>
</tr>
<tr>
<td>39G12</td>
<td>37.7</td>
<td>20.05</td>
</tr>
<tr>
<td>P7524</td>
<td>36.8</td>
<td>19.64</td>
</tr>
<tr>
<td>X85C385</td>
<td>33.5</td>
<td>18.72</td>
</tr>
<tr>
<td>X90B216</td>
<td>34.3</td>
<td>18.69</td>
</tr>
<tr>
<td>39V43</td>
<td>38.8</td>
<td>18.03</td>
</tr>
<tr>
<td>X85B084</td>
<td>35.7</td>
<td>17.11</td>
</tr>
<tr>
<td>Average</td>
<td>35.7</td>
<td>19.4</td>
</tr>
</tbody>
</table>

Train, Michael
- **Location:** WAVERLEY
- **Planting Date:** 7/10/2013
- **Harvest Date:** 17/03/2014
- **Days from planting to harvest:** 161
- **Trial Altitude:** 73 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38V12</td>
<td>43.2</td>
<td>25.90</td>
</tr>
<tr>
<td>P8589</td>
<td>44.2</td>
<td>23.40</td>
</tr>
<tr>
<td>P9400</td>
<td>39.9</td>
<td>23.24</td>
</tr>
<tr>
<td>P8644</td>
<td>40.0</td>
<td>22.76</td>
</tr>
<tr>
<td>X90B153</td>
<td>45.9</td>
<td>22.73</td>
</tr>
<tr>
<td>P8805</td>
<td>43.0</td>
<td>22.17</td>
</tr>
<tr>
<td>X90C526</td>
<td>41.1</td>
<td>21.37</td>
</tr>
<tr>
<td>P9308</td>
<td>36.6</td>
<td>20.42</td>
</tr>
<tr>
<td>Average</td>
<td>41.7</td>
<td>22.7</td>
</tr>
</tbody>
</table>

Trotter, Sam
- **Location:** MARTON
- **Planting Date:** 4/11/2013
- **Harvest Date:** 31/03/2014
- **Days from planting to harvest:** 147
- **Trial Altitude:** 215 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8589</td>
<td>52.1</td>
<td>27.33</td>
</tr>
<tr>
<td>P8644</td>
<td>45.1</td>
<td>24.93</td>
</tr>
<tr>
<td>P8805</td>
<td>41.8</td>
<td>24.92</td>
</tr>
<tr>
<td>X90B153</td>
<td>41.0</td>
<td>24.37</td>
</tr>
<tr>
<td>P9400</td>
<td>36.7</td>
<td>24.19</td>
</tr>
<tr>
<td>X90B216</td>
<td>37.3</td>
<td>23.78</td>
</tr>
<tr>
<td>38V12</td>
<td>43.9</td>
<td>22.48</td>
</tr>
<tr>
<td>X85B084</td>
<td>39.3</td>
<td>22.20</td>
</tr>
<tr>
<td>Average</td>
<td>42.1</td>
<td>24.3</td>
</tr>
</tbody>
</table>
Individual Farmer Trial Results: Lower North Island & Taranaki

Tucker, Bryan
- **Location:** GREY TOWN
- **Planting Date:** 9/11/2013
- **Harvest Date:** 6/04/2014
- **Days from planting to harvest:** 148
- **Trial Altitude:** 53 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9721</td>
<td>34.1</td>
<td>22.07</td>
</tr>
<tr>
<td>38V12</td>
<td>37.7</td>
<td>21.44</td>
</tr>
<tr>
<td>38H20</td>
<td>35.3</td>
<td>21.03</td>
</tr>
<tr>
<td>X00C211</td>
<td>33.3</td>
<td>19.30</td>
</tr>
<tr>
<td>P9400</td>
<td>33.3</td>
<td>19.05</td>
</tr>
<tr>
<td>P9911</td>
<td>31.7</td>
<td>18.84</td>
</tr>
<tr>
<td>X00G960</td>
<td>31.4</td>
<td>18.63</td>
</tr>
<tr>
<td>P0021</td>
<td>31.1</td>
<td>17.24</td>
</tr>
<tr>
<td>Average</td>
<td>33.5</td>
<td>19.7</td>
</tr>
</tbody>
</table>

Wall, Matthew - Trial 1
- **Location:** FEATHERSTON
- **Planting Date:** 4/11/2013
- **Harvest Date:** 27/03/2014
- **Days from planting to harvest:** 137
- **Trial Altitude:** 6 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9721</td>
<td>34.0</td>
<td>22.07</td>
</tr>
<tr>
<td>38V12</td>
<td>39.5</td>
<td>21.07</td>
</tr>
<tr>
<td>P9400</td>
<td>40.6</td>
<td>21.01</td>
</tr>
<tr>
<td>P9721</td>
<td>37.8</td>
<td>20.83</td>
</tr>
<tr>
<td>37Y12</td>
<td>40.1</td>
<td>19.97</td>
</tr>
<tr>
<td>Average</td>
<td>38.5</td>
<td>21.2</td>
</tr>
</tbody>
</table>

Wall, Matthew - Trial 2
- **Location:** FEATHERSTON
- **Planting Date:** 4/11/2013
- **Harvest Date:** 27/03/2014
- **Days from planting to harvest:** 143
- **Trial Altitude:** 6 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X90B216</td>
<td>34.3</td>
<td>22.07</td>
</tr>
<tr>
<td>P8644</td>
<td>35.5</td>
<td>21.44</td>
</tr>
<tr>
<td>X90B153</td>
<td>37.4</td>
<td>21.07</td>
</tr>
<tr>
<td>X85B084</td>
<td>38.4</td>
<td>21.01</td>
</tr>
<tr>
<td>38V12</td>
<td>33.3</td>
<td>19.30</td>
</tr>
<tr>
<td>Average</td>
<td>38.5</td>
<td>21.2</td>
</tr>
</tbody>
</table>

Washer, Greg
- **Location:** HAWEREA
- **Planting Date:** 29/10/2013
- **Harvest Date:** 8/04/2014
- **Days from planting to harvest:** 161
- **Trial Altitude:** 100 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X85C385</td>
<td>38.8</td>
<td>20.76</td>
</tr>
<tr>
<td>P9308</td>
<td>39.2</td>
<td>18.78</td>
</tr>
<tr>
<td>X90C526</td>
<td>38.4</td>
<td>18.33</td>
</tr>
<tr>
<td>P9400</td>
<td>33.9</td>
<td>18.31</td>
</tr>
<tr>
<td>38V12</td>
<td>37.3</td>
<td>18.20</td>
</tr>
<tr>
<td>Average</td>
<td>37.5</td>
<td>18.9</td>
</tr>
</tbody>
</table>

Weir, John
- **Location:** TOKO
- **Planting Date:** 22/10/2013
- **Harvest Date:** 3/04/2014
- **Days from planting to harvest:** 163
- **Trial Altitude:** 194 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X90B153</td>
<td>34.3</td>
<td>29.44</td>
</tr>
<tr>
<td>P9308</td>
<td>35.5</td>
<td>29.26</td>
</tr>
<tr>
<td>P9400</td>
<td>33.1</td>
<td>28.65</td>
</tr>
<tr>
<td>39F58</td>
<td>34.6</td>
<td>27.84</td>
</tr>
<tr>
<td>P9400</td>
<td>30.9</td>
<td>26.16</td>
</tr>
<tr>
<td>X90B153</td>
<td>37.4</td>
<td>25.48</td>
</tr>
<tr>
<td>X85B084</td>
<td>38.4</td>
<td>24.53</td>
</tr>
<tr>
<td>38V12</td>
<td>33.3</td>
<td>24.10</td>
</tr>
<tr>
<td>Average</td>
<td>34.7</td>
<td>26.9</td>
</tr>
</tbody>
</table>

Williamson, Ian
- **Location:** LONGBURN
- **Planting Date:** 21/10/2013
- **Harvest Date:** 14/03/2014
- **Days from planting to harvest:** 144
- **Trial Altitude:** 6 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9400</td>
<td>34.8</td>
<td>26.36</td>
</tr>
<tr>
<td>P9308</td>
<td>35.2</td>
<td>26.36</td>
</tr>
<tr>
<td>X90C526</td>
<td>40.1</td>
<td>26.22</td>
</tr>
<tr>
<td>X90B153</td>
<td>40.3</td>
<td>26.04</td>
</tr>
<tr>
<td>38V12</td>
<td>34.4</td>
<td>25.96</td>
</tr>
<tr>
<td>X85C385</td>
<td>37.9</td>
<td>25.94</td>
</tr>
<tr>
<td>X90B216</td>
<td>37.9</td>
<td>25.64</td>
</tr>
<tr>
<td>P9721</td>
<td>31.7</td>
<td>25.29</td>
</tr>
<tr>
<td>Average</td>
<td>36.6</td>
<td>26.0</td>
</tr>
</tbody>
</table>
Maize silage hybrid comparisons for all years cumulative up to 2014 harvest

SOUTH ISLAND PAIRED SILAGE COMPARISONS OF PIONEER® BRAND MAIZE HYBRIDS
COMPARISON INDEX FOR SOUTH ISLAND

<table>
<thead>
<tr>
<th></th>
<th>Page</th>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>38H20</td>
<td>38V12</td>
<td>83</td>
<td>P7524</td>
</tr>
<tr>
<td></td>
<td>39F58</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39T45</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTL85</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P9400</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>38V12</td>
<td>38H20</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39F58</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39T45</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTL85</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P9400</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>39F58</td>
<td>38H20</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38V12</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>39G12</td>
<td>39V43</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39T45</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delltop</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P7524</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>39T45</td>
<td>38H20</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38V12</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39G12</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTL85</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delltop</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>39V43</td>
<td>39G12</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P7524</td>
<td>94</td>
<td></td>
</tr>
</tbody>
</table>
38H20 compared with 39F58 for silage.
South Island

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38H20 (%)</th>
<th>Harvest drymatter 39F58 (%)</th>
<th>Silage yield advantage to 38H20 (kgDM/ha)</th>
<th>Milk profit advantage to 38H20 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>63 trials</td>
<td>34.2%</td>
<td>34.8%</td>
<td>+ 715 kgDM/ha</td>
<td>+ $626 /ha</td>
</tr>
</tbody>
</table>

38H20 outyields 39F58 (probability < 0.05). **This is a significant result.** Hybrid superiority for yield is shown. Confidently plant the "winning hybrid", but also consult the trait ratings.

Star denotes the significance level of this comparison and is not intended to be a product recommendation.

![Graph showing comparison between 38H20 and 39F58](image)
38H20 compared with 39T45 for silage.

South Island

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38H20 (%)</th>
<th>Harvest drymatter 39T45 (%)</th>
<th>Silage yield advantage to 38H20 (kgDM/ha)</th>
<th>Milk profit advantage to 38H20 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>49 trials</td>
<td>36.0 %</td>
<td>38.5 %</td>
<td>+ 969 kgDM/ha</td>
<td>+ $847 /ha</td>
</tr>
</tbody>
</table>

38H20 outyields 39T45 (probability < 0.01). **This is a highly significant result.**

Hybrid superiority for yield is shown.

Plant the "winning hybrid" with a high level of confidence, but also consult the trait ratings.

Pioneer® brand 38H20

- **Number of seasons**: 6
- **Number of comparisons**: 49 trials
- **Harvest drymatter 38H20 (%)**: 36.0%
- **Harvest drymatter 39T45 (%)**: 38.5%
- **Silage yield advantage to 38H20 (kgDM/ha)**: + 969 kgDM/ha
- **Milk profit advantage to 38H20 ($/ha)**: + $847 /ha

South Island

- **38H20**
 - \(R^2 = 0.7811 \)
- **39T45**
 - \(R^2 = 0.872 \)

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.
38H20 compared with CTL85 for silage.

South Island

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38H20 (%)</th>
<th>Harvest drymatter CTL85 (%)</th>
<th>Silage yield advantage to 38H20 (kgDM/ha)</th>
<th>Milk profit advantage to 38H20 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>39 trials</td>
<td>36.8 %</td>
<td>39.3 %</td>
<td>+ 2097 kgDM/ha</td>
<td>+ $1835 /ha</td>
</tr>
</tbody>
</table>

Pioneer® brand

38H20

38H20 outyields CTL85 (probability < 0.001). **This is a very highly significant result.**

Hybrid superiority for yield is shown.

Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

[Graph showing trial average yield kilograms per hectare for 38H20 and CTL85.]

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.

South Island
38H20 compared with P9400 for silage.
South Island

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38H20 (%)</th>
<th>Harvest drymatter P9400 (%)</th>
<th>Silage yield advantage to 38H20 (kgDM/ha)</th>
<th>Milk profit advantage to 38H20 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8 trials</td>
<td>36.1 %</td>
<td>37.8 %</td>
<td>+ 2427 kgDM/ha</td>
<td>+ $2124 /ha</td>
</tr>
</tbody>
</table>

38H20 outyields P9400 (probability < 0.05). This is a significant result.
Hybrid superiority for yield is shown.
Confidently plant the "winning hybrid", but also consult the trait ratings.

Star denotes the significance level of this comparison and is not intended to be a product recommendation.

`38H20 R² = 0.5363
P9400 R² = 0.6957`

Each triangle or square indicates a trial result for the indicated hybrid.
The lines of "best fit" show the relative performance of each hybrid.

South Island
38V12 compared with 38H20 for silage.

South Island

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38V12 (%)</th>
<th>Harvest drymatter 38H20 (%)</th>
<th>Silage yield advantage to 38V12 (kgDM/ha)</th>
<th>Milk profit advantage to 38V12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>79 trials</td>
<td>35.7 %</td>
<td>35.9 %</td>
<td>+ 214 kgDM/ha</td>
<td>+ $187 /ha</td>
</tr>
</tbody>
</table>

This is not a significant result. **Hybrid superiority for yield cannot be claimed.** This either means more trial locations and seasons are needed to achieve significance or there is no yield difference between the hybrids. **Ignore the yield comparison for hybrid selection.** Refer primarily to trait ratings to select between the hybrids.

Pioneer® brand 38V12

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

NS

NS denotes that this comparison is "not significant" and is not intended to be a product recommendation.
38V12 compared with 39F58 for silage.
South Island

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38V12 (%)</th>
<th>Harvest drymatter 39F58 (%)</th>
<th>Silage yield advantage to 38V12 (kgDM/ha)</th>
<th>Milk profit advantage to 38V12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>50 trials</td>
<td>34.0 %</td>
<td>34.9 %</td>
<td>+ 705 kgDM/ha</td>
<td>+ $617 /ha</td>
</tr>
</tbody>
</table>

38V12 outyields 39F58 (probability < 0.05). **This is a significant result.**
Hybrid superiority for yield is shown.
Confidently plant the "winning hybrid", but also consult the trait ratings.

Star denotes the significance level of this comparison and is not intended to be a product recommendation.
38V12 compared with 39T45 for silage.

South Island

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38V12 (%)</th>
<th>Harvest drymatter 39T45 (%)</th>
<th>Silage yield advantage to 38V12 (kgDM/ha)</th>
<th>Milk profit advantage to 38V12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>59 trials</td>
<td>35.4 %</td>
<td>38.2 %</td>
<td>+ 1108 kgDM/ha</td>
<td>+ $970 /ha</td>
</tr>
</tbody>
</table>

38V12 outyields 39T45 (probability < 0.001). **This is a very highly significant result.** Hybrid superiority for yield is shown.

Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Pioneer® brand

38V12

\[
38V12 \quad R^2 = 0.7998 \\
39T45 \quad R^2 = 0.8302
\]

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.
38V12 compared with CTL85 for silage. South Island

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38V12 (%)</th>
<th>Harvest drymatter CTL85 (%)</th>
<th>Silage yield advantage to 38V12 (kgDM/ha)</th>
<th>Milk profit advantage to 38V12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>39 trials</td>
<td>36.7 %</td>
<td>39.4 %</td>
<td>+ 2467 kgDM/ha</td>
<td>+ $2159 /ha</td>
</tr>
</tbody>
</table>

38V12 outyields CTL85 (probability < 0.001). **This is a very highly significant result.** Hybrid superiority for yield is shown. Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

![Graph showing yield comparison between 38V12 and CTL85 in South Island.](attachment:image.png)

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Pioneer® brand 38V12

\[
\begin{align*}
38V12 & \quad R^2 = 0.7631 \\
CTL85 & \quad R^2 = 0.7324
\end{align*}
\]
38V12 compared with P9400 for silage. South Island

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 38V12 (%)</th>
<th>Harvest drymatter P9400 (%)</th>
<th>Silage yield advantage to 38V12 (kgDM/ha)</th>
<th>Milk profit advantage to 38V12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>12 trials</td>
<td>37.8 %</td>
<td>37.0 %</td>
<td>+ 1812 kgDM/ha</td>
<td>+ $1585 /ha</td>
</tr>
</tbody>
</table>

38V12 outyields P9400 (probability < 0.01). **This is a highly significant result.** Hybrid superiority for yield is shown. Plant the "winning hybrid" with a high level of confidence, but also consult the trait ratings.

Star Rating:

- ★★★

Stars denote the significance level of this comparison and are not intended to be a product recommendation.

South Island

Plot Description:

- Each triangle or square indicates a trial result for the indicated hybrid.
- The lines of "best fit" show the relative performance of each hybrid.

Graph Details:

- **38V12** $R^2 = 0.8629$
- **P9400** $R^2 = 0.8489$

South Island
39G12 compared with 39V43 for silage.

South Island

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 39G12 (%)</th>
<th>Harvest drymatter 39V43 (%)</th>
<th>Silage yield advantage to 39G12 (kgDM/ha)</th>
<th>Milk profit advantage to 39G12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>54 trials</td>
<td>37.5 %</td>
<td>39.8 %</td>
<td>+ 2006 kgDM/ha</td>
<td>+ $1755 /ha</td>
</tr>
</tbody>
</table>

39G12 outyields 39V43 (probability < 0.001). This is a very highly significant result. Hybrid superiority for yield is shown.

Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.
39G12 compared with Delitop for silage.

South Island

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 39G12 (%)</th>
<th>Harvest drymatter Delitop (%)</th>
<th>Silage yield advantage to 39G12 (kgDM/ha)</th>
<th>Milk profit advantage to 39G12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>29 trials</td>
<td>36.6 %</td>
<td>36.1 %</td>
<td>+ 2103 kgDM/ha</td>
<td>+ $1304 /ha</td>
</tr>
</tbody>
</table>

39G12 outyields Delitop (probability < 0.01). This is a highly significant result. Hybrid superiority for yield is shown. Plant the "winning hybrid" with a high level of confidence, but also consult the trait ratings.

![Graph showing yield comparison between 39G12 and Delitop for silage in South Island.](image)

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.
39G12 compared with P7524 for silage. South Island

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 39G12 (%)</th>
<th>Harvest drymatter P7524 (%)</th>
<th>Silage yield advantage to 39G12 (kgDM/ha)</th>
<th>Milk profit advantage to 39G12 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>25 trials</td>
<td>37.8 %</td>
<td>38.1 %</td>
<td>+ 364 kgDM/ha</td>
<td>+ $319 /ha</td>
</tr>
</tbody>
</table>

This is not a significant result. **Hybrid superiority for yield cannot be claimed.** This either means more trial locations and seasons are needed to achieve significance or there is no yield difference between the hybrids. **Ignore the yield comparison for hybrid selection.** Refer primarily to trait ratings to select between the hybrids.

NS

NS denotes that this comparison is "not significant" and is not intended to be a product recommendation.

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

South Island
39T45 Compared with 39G12 for Silage.

South Island

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 39T45 (%)</th>
<th>Harvest drymatter 39G12 (%)</th>
<th>Silage yield advantage to 39T45 (kgDM/ha)</th>
<th>Milk profit advantage to 39T45 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>55 trials</td>
<td>35.7 %</td>
<td>38.2 %</td>
<td>+ 898 kgDM/ha</td>
<td>+ $785 /ha</td>
</tr>
</tbody>
</table>

39T45 outyields 39G12 (probability < 0.01). **This is a highly significant result.**

Hybrid superiority for yield is shown. Plant the "winning hybrid" with a high level of confidence, but also consult the trait ratings.

![Graph showing trial results for 39T45 and 39G12](chart.png)

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

South Island
39T45 compared with CTL85 for silage. South Island

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 39T45 (%)</th>
<th>Harvest drymatter CTL85 (%)</th>
<th>Silage yield advantage to 39T45 (kgDM/ha)</th>
<th>Milk profit advantage to 39T45 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>31 trials</td>
<td>39.3 %</td>
<td>39.5 %</td>
<td>+ 1251 kgDM/ha</td>
<td>+ $1094 /ha</td>
</tr>
</tbody>
</table>

39T45 outyields CTL85 (probability < 0.05). **This is a significant result.** Hybrid superiority for yield is shown. Confidently plant the "winning hybrid", but also consult the trait ratings.

- **39T45**
 - R² = 0.7941
- **CTL85**
 - R² = 0.695

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

Star denotes the significance level of this comparison and is not intended to be a product recommendation.
39T45 compared with Delitop for silage.
South Island

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter 39T45 (%)</th>
<th>Harvest drymatter Delitop (%)</th>
<th>Silage yield advantage to 39T45 (kgDM/ha)</th>
<th>Milk profit advantage to 39T45 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>17 trials</td>
<td>34.5 %</td>
<td>36.3 %</td>
<td>+ 2853 kgDM/ha</td>
<td>+ $2496 /ha</td>
</tr>
</tbody>
</table>

39T45 outyields Delitop (probability < 0.001). **This is a very highly significant result.**
Hybrid superiority for yield is shown.
Plant the "winning hybrid" with a very high level of confidence, but also consult the trait ratings.

Stars denote the significance level of this comparison and are not intended to be a product recommendation.

```
39T45  R² = 0.7991
Delitop  R² = 0.7023
```

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.
P7524 compared with 39V43 for silage.

South Island

<table>
<thead>
<tr>
<th>Number of seasons</th>
<th>Number of comparisons</th>
<th>Harvest drymatter P7524 (%)</th>
<th>Harvest drymatter 39V43 (%)</th>
<th>Silage yield advantage to P7524 (kgDM/ha)</th>
<th>Milk profit advantage to P7524 ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20 trials</td>
<td>38.0 %</td>
<td>39.4 %</td>
<td>+ 1072 kgDM/ha</td>
<td>+ $938 /ha</td>
</tr>
</tbody>
</table>

This is not a significant result. **Hybrid superiority for yield cannot be claimed.** This either means more trial locations and seasons are needed to achieve significance or there is no yield difference between the hybrids. **Ignore the yield comparison for hybrid selection.** Refer primarily to trait ratings to select between the hybrids.

Pioneer® brand P7524

|

NS

NS denotes that this comparison is "not significant" and is not intended to be a product recommendation.

Each triangle or square indicates a trial result for the indicated hybrid. The lines of "best fit" show the relative performance of each hybrid.

South Island
Pioneer Research Station (Ashburton) - Trial 1

Location: ASHBURTON
Planting Date: 2/11/2013
Harvest Date: 14/04/2014
Days from planting to harvest: 163
Trial Altitude: 85 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8805</td>
<td>29.3</td>
<td>25.23</td>
</tr>
<tr>
<td>P8025</td>
<td>30.6</td>
<td>23.98</td>
</tr>
<tr>
<td>P8000</td>
<td>29.3</td>
<td>23.55</td>
</tr>
<tr>
<td>P8284</td>
<td>27.1</td>
<td>22.76</td>
</tr>
<tr>
<td>39V43</td>
<td>33.5</td>
<td>22.38</td>
</tr>
<tr>
<td>P7709</td>
<td>32.1</td>
<td>21.76</td>
</tr>
<tr>
<td>P8192</td>
<td>32.2</td>
<td>21.66</td>
</tr>
<tr>
<td>39G12</td>
<td>33.4</td>
<td>21.45</td>
</tr>
<tr>
<td>X80A430</td>
<td>30.8</td>
<td>21.07</td>
</tr>
<tr>
<td>P7631</td>
<td>31.0</td>
<td>20.87</td>
</tr>
<tr>
<td>P7524</td>
<td>33.6</td>
<td>17.85</td>
</tr>
<tr>
<td>Average</td>
<td>31.2</td>
<td>22.1</td>
</tr>
</tbody>
</table>

Pioneer Research Station (Ashburton) - Trial 2

Location: ASHBURTON
Planting Date: 2/11/2013
Harvest Date: 2/05/2014
Days from planting to harvest: 181
Trial Altitude: 85 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8589</td>
<td>41.1</td>
<td>24.07</td>
</tr>
<tr>
<td>X85R216</td>
<td>36.9</td>
<td>21.00</td>
</tr>
<tr>
<td>X90B153</td>
<td>39.7</td>
<td>20.30</td>
</tr>
<tr>
<td>X80B419</td>
<td>38.1</td>
<td>20.17</td>
</tr>
<tr>
<td>X85B084</td>
<td>35.1</td>
<td>18.99</td>
</tr>
<tr>
<td>X85C384</td>
<td>37.4</td>
<td>18.77</td>
</tr>
<tr>
<td>X85G038</td>
<td>33.4</td>
<td>16.11</td>
</tr>
<tr>
<td>Average</td>
<td>37.7</td>
<td>20.2</td>
</tr>
</tbody>
</table>

Pioneer Research Station (Ashburton) - Trial 3

Location: ASHBURTON
Planting Date: 2/11/2013
Harvest Date: 12/05/2014
Days from planting to harvest: 191
Trial Altitude: 85 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X90H035</td>
<td>46.8</td>
<td>21.75</td>
</tr>
<tr>
<td>X90C526</td>
<td>42.2</td>
<td>20.76</td>
</tr>
<tr>
<td>P8805</td>
<td>45.4</td>
<td>20.39</td>
</tr>
<tr>
<td>X90J028</td>
<td>43.0</td>
<td>19.87</td>
</tr>
<tr>
<td>38V12</td>
<td>41.1</td>
<td>19.11</td>
</tr>
<tr>
<td>X90B216</td>
<td>45.3</td>
<td>18.09</td>
</tr>
<tr>
<td>X85E012</td>
<td>43.6</td>
<td>17.12</td>
</tr>
<tr>
<td>X90B216</td>
<td>45.3</td>
<td>18.09</td>
</tr>
<tr>
<td>Average</td>
<td>43.4</td>
<td>19.5</td>
</tr>
</tbody>
</table>
Adams, David

- **Location:** Southbridge
- **Planting Date:** 22/10/2013
- **Harvest Date:** 15/04/2014
- **Days from planting to harvest:** 175
- **Trial Altitude:** 37 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X90B153</td>
<td>37.5</td>
<td>27.32</td>
</tr>
<tr>
<td>X85R216</td>
<td>43.6</td>
<td>24.56</td>
</tr>
<tr>
<td>38V12</td>
<td>32.7</td>
<td>24.29</td>
</tr>
<tr>
<td>P9175</td>
<td>34.3</td>
<td>22.52</td>
</tr>
<tr>
<td>P8805</td>
<td>39.6</td>
<td>22.19</td>
</tr>
<tr>
<td>X85C385</td>
<td>36.8</td>
<td>21.62</td>
</tr>
<tr>
<td>X90C526</td>
<td>33.1</td>
<td>20.55</td>
</tr>
<tr>
<td>X90B216</td>
<td>34.0</td>
<td>19.10</td>
</tr>
<tr>
<td>Average</td>
<td>36.5</td>
<td>22.8</td>
</tr>
</tbody>
</table>

Brosnahan, Phillip & Stephen

- **Location:** Timaru
- **Planting Date:** 21/10/2013
- **Harvest Date:** 23/04/2014
- **Days from planting to harvest:** 184
- **Trial Altitude:** 14 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8805</td>
<td>43.9</td>
<td>25.12</td>
</tr>
<tr>
<td>P7631</td>
<td>45.0</td>
<td>23.75</td>
</tr>
<tr>
<td>P7709</td>
<td>48.1</td>
<td>22.66</td>
</tr>
<tr>
<td>X85E012</td>
<td>43.2</td>
<td>22.66</td>
</tr>
<tr>
<td>P7524</td>
<td>41.0</td>
<td>22.05</td>
</tr>
<tr>
<td>39G12</td>
<td>42.2</td>
<td>21.73</td>
</tr>
<tr>
<td>X80A430</td>
<td>44.8</td>
<td>20.42</td>
</tr>
<tr>
<td>P8025</td>
<td>40.7</td>
<td>19.51</td>
</tr>
<tr>
<td>Average</td>
<td>43.6</td>
<td>22.2</td>
</tr>
</tbody>
</table>

Carey, Mark

- **Location:** Motueka
- **Planting Date:** 8/11/2013
- **Harvest Date:** 28/03/2014
- **Days from planting to harvest:** 140
- **Trial Altitude:** 1 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9911</td>
<td>37.1</td>
<td>27.26</td>
</tr>
<tr>
<td>P0216</td>
<td>31.5</td>
<td>25.24</td>
</tr>
<tr>
<td>P9721</td>
<td>37.8</td>
<td>24.28</td>
</tr>
<tr>
<td>P0021</td>
<td>35.0</td>
<td>23.38</td>
</tr>
<tr>
<td>X00G960</td>
<td>37.1</td>
<td>22.57</td>
</tr>
<tr>
<td>P9400</td>
<td>39.6</td>
<td>22.25</td>
</tr>
<tr>
<td>Average</td>
<td>36.4</td>
<td>24.2</td>
</tr>
</tbody>
</table>

Chapman, John

- **Location:** Ashburton
- **Planting Date:** 1/11/2013
- **Harvest Date:** 6/05/2014
- **Days from planting to harvest:** 186
- **Trial Altitude:** 74 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39V43</td>
<td>48.6</td>
<td>16.45</td>
</tr>
<tr>
<td>P8000</td>
<td>43.4</td>
<td>16.19</td>
</tr>
<tr>
<td>P8192</td>
<td>47.4</td>
<td>15.40</td>
</tr>
<tr>
<td>X80A430</td>
<td>43.2</td>
<td>14.53</td>
</tr>
<tr>
<td>39G12</td>
<td>44.8</td>
<td>14.20</td>
</tr>
<tr>
<td>P7524</td>
<td>41.1</td>
<td>13.57</td>
</tr>
<tr>
<td>P7631</td>
<td>44.4</td>
<td>13.51</td>
</tr>
<tr>
<td>P7709</td>
<td>46.0</td>
<td>12.72</td>
</tr>
<tr>
<td>Average</td>
<td>44.9</td>
<td>14.6</td>
</tr>
</tbody>
</table>

Dobbs, Lionel

- **Location:** Orari
- **Planting Date:** 3/10/2013
- **Harvest Date:** 31/03/2014
- **Days from planting to harvest:** 179
- **Trial Altitude:** 78 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X85C384</td>
<td>29.2</td>
<td>23.81</td>
</tr>
<tr>
<td>P8805</td>
<td>27.8</td>
<td>21.46</td>
</tr>
<tr>
<td>P8192</td>
<td>33.3</td>
<td>20.49</td>
</tr>
<tr>
<td>P8284</td>
<td>33.3</td>
<td>20.39</td>
</tr>
<tr>
<td>X80B419</td>
<td>29.3</td>
<td>19.21</td>
</tr>
<tr>
<td>X85E012</td>
<td>29.4</td>
<td>17.68</td>
</tr>
<tr>
<td>39G12</td>
<td>35.8</td>
<td>17.61</td>
</tr>
<tr>
<td>39V43</td>
<td>37.2</td>
<td>15.98</td>
</tr>
<tr>
<td>Average</td>
<td>31.9</td>
<td>18.6</td>
</tr>
</tbody>
</table>
Five Star Beef - Trial 1

Location: WAKANUI
Planting Date: 12/10/2013
Harvest Date: 15/04/2014
Days from planting to harvest: 185
Trial Altitude: 36 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8805</td>
<td>31.2</td>
<td>22.33</td>
</tr>
<tr>
<td>P8025</td>
<td>38.2</td>
<td>20.57</td>
</tr>
<tr>
<td>P7631</td>
<td>35.8</td>
<td>20.16</td>
</tr>
<tr>
<td>P8192</td>
<td>36.0</td>
<td>19.71</td>
</tr>
<tr>
<td>39G12</td>
<td>36.3</td>
<td>19.70</td>
</tr>
<tr>
<td>P8284</td>
<td>32.6</td>
<td>19.29</td>
</tr>
<tr>
<td>P8000</td>
<td>35.3</td>
<td>19.10</td>
</tr>
<tr>
<td>P7709</td>
<td>37.8</td>
<td>18.81</td>
</tr>
<tr>
<td>X80B419</td>
<td>33.0</td>
<td>18.49</td>
</tr>
<tr>
<td>X80A430</td>
<td>37.0</td>
<td>18.17</td>
</tr>
<tr>
<td>P7524</td>
<td>39.7</td>
<td>17.76</td>
</tr>
<tr>
<td>Average</td>
<td>35.7</td>
<td>19.5</td>
</tr>
</tbody>
</table>

Five Star Beef - Trial 2

Location: WAKANUI
Planting Date: 12/10/2013
Harvest Date: 1/05/2014
Days from planting to harvest: 201
Trial Altitude: 36 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38V12</td>
<td>39.9</td>
<td>21.54</td>
</tr>
<tr>
<td>P8805</td>
<td>42.5</td>
<td>21.49</td>
</tr>
<tr>
<td>P8589</td>
<td>39.0</td>
<td>19.81</td>
</tr>
<tr>
<td>X90C526</td>
<td>42.7</td>
<td>19.40</td>
</tr>
<tr>
<td>X80B419</td>
<td>43.8</td>
<td>19.17</td>
</tr>
<tr>
<td>X85C384</td>
<td>42.9</td>
<td>19.13</td>
</tr>
<tr>
<td>P9400</td>
<td>36.7</td>
<td>18.61</td>
</tr>
<tr>
<td>X90B216</td>
<td>38.6</td>
<td>18.39</td>
</tr>
<tr>
<td>X90B153</td>
<td>41.2</td>
<td>18.11</td>
</tr>
<tr>
<td>X85B084</td>
<td>39.4</td>
<td>18.09</td>
</tr>
<tr>
<td>X85C385</td>
<td>40.0</td>
<td>17.62</td>
</tr>
<tr>
<td>Average</td>
<td>40.6</td>
<td>19.2</td>
</tr>
</tbody>
</table>

Fleming, Martin

Location: ASHBURTON
Planting Date: 21/10/2013
Harvest Date: 23/04/2014
Days from planting to harvest: 184
Trial Altitude: 206 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39G12</td>
<td>38.4</td>
<td>21.87</td>
</tr>
<tr>
<td>P7631</td>
<td>43.1</td>
<td>21.19</td>
</tr>
<tr>
<td>P8025</td>
<td>37.3</td>
<td>20.61</td>
</tr>
<tr>
<td>P8805</td>
<td>31.3</td>
<td>20.23</td>
</tr>
<tr>
<td>P7709</td>
<td>43.6</td>
<td>20.21</td>
</tr>
<tr>
<td>P7524</td>
<td>39.1</td>
<td>19.87</td>
</tr>
<tr>
<td>X80A430</td>
<td>37.5</td>
<td>18.78</td>
</tr>
<tr>
<td>39V43</td>
<td>42.2</td>
<td>18.55</td>
</tr>
<tr>
<td>Average</td>
<td>39.1</td>
<td>20.2</td>
</tr>
</tbody>
</table>

Flintoft, Peter

Location: CULVERDEN
Planting Date: 18/10/2013
Harvest Date: 18/03/2014
Days from planting to harvest: 151
Trial Altitude: 185 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8000</td>
<td>36.4</td>
<td>25.78</td>
</tr>
<tr>
<td>P7524</td>
<td>40.5</td>
<td>22.56</td>
</tr>
<tr>
<td>X85E012</td>
<td>38.8</td>
<td>21.16</td>
</tr>
<tr>
<td>P7709</td>
<td>41.0</td>
<td>21.10</td>
</tr>
<tr>
<td>X80A430</td>
<td>37.8</td>
<td>20.57</td>
</tr>
<tr>
<td>P8192</td>
<td>35.5</td>
<td>19.41</td>
</tr>
<tr>
<td>P7631</td>
<td>37.4</td>
<td>19.16</td>
</tr>
<tr>
<td>39G12</td>
<td>33.7</td>
<td>18.97</td>
</tr>
<tr>
<td>Average</td>
<td>37.6</td>
<td>21.1</td>
</tr>
</tbody>
</table>

Fleming, Martin

Location: ASHBURTON
Planting Date: 21/10/2013
Harvest Date: 6/05/2014
Days from planting to harvest: 197
Trial Altitude: 42 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38H20</td>
<td>46.2</td>
<td>23.17</td>
</tr>
<tr>
<td>38V12</td>
<td>38.2</td>
<td>22.32</td>
</tr>
<tr>
<td>X85R216</td>
<td>44.5</td>
<td>21.51</td>
</tr>
<tr>
<td>X90H035</td>
<td>48.8</td>
<td>20.56</td>
</tr>
<tr>
<td>X90B216</td>
<td>46.3</td>
<td>20.36</td>
</tr>
<tr>
<td>X85C385</td>
<td>47.9</td>
<td>20.07</td>
</tr>
<tr>
<td>P8805</td>
<td>42.7</td>
<td>17.93</td>
</tr>
<tr>
<td>X90B153</td>
<td>45.1</td>
<td>17.71</td>
</tr>
<tr>
<td>Average</td>
<td>45.0</td>
<td>20.5</td>
</tr>
</tbody>
</table>
South Island

Leadley, Paul

Location: ASHBURTON
Planting Date: 15/10/2013
Harvest Date: 25/04/2014
Days from planting to harvest: 192

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38V12</td>
<td>38.8</td>
<td>24.32</td>
</tr>
<tr>
<td>P8805</td>
<td>42.5</td>
<td>23.69</td>
</tr>
<tr>
<td>P8589</td>
<td>41.1</td>
<td>22.15</td>
</tr>
<tr>
<td>X90B153</td>
<td>43.2</td>
<td>21.37</td>
</tr>
<tr>
<td>X90C526</td>
<td>39.1</td>
<td>19.81</td>
</tr>
<tr>
<td>X90H035</td>
<td>40.1</td>
<td>19.70</td>
</tr>
<tr>
<td>X85B084</td>
<td>39.2</td>
<td>19.62</td>
</tr>
<tr>
<td>38H20</td>
<td>38.8</td>
<td>19.36</td>
</tr>
<tr>
<td>Average</td>
<td>40.3</td>
<td>21.3</td>
</tr>
</tbody>
</table>

Maijer, Harry

Location: OXFORD
Planting Date: 11/11/2013
Harvest Date: 2/05/2014
Days from planting to harvest: 172

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8284</td>
<td>32.0</td>
<td>20.09</td>
</tr>
<tr>
<td>P8000</td>
<td>35.6</td>
<td>18.92</td>
</tr>
<tr>
<td>P7524</td>
<td>40.0</td>
<td>18.15</td>
</tr>
<tr>
<td>X80A430</td>
<td>37.1</td>
<td>17.91</td>
</tr>
<tr>
<td>39G12</td>
<td>37.4</td>
<td>17.79</td>
</tr>
<tr>
<td>P8025</td>
<td>29.6</td>
<td>16.66</td>
</tr>
<tr>
<td>39V43</td>
<td>35.7</td>
<td>16.09</td>
</tr>
<tr>
<td>P7709</td>
<td>34.9</td>
<td>14.80</td>
</tr>
<tr>
<td>Average</td>
<td>35.3</td>
<td>17.6</td>
</tr>
</tbody>
</table>

McFadden, Alistair

Location: HINDS
Planting Date: 30/10/2013
Harvest Date: 24/04/2014
Days from planting to harvest: 176
Trial Altitude: 146 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X80B419</td>
<td>38.1</td>
<td>24.53</td>
</tr>
<tr>
<td>39G12</td>
<td>38.7</td>
<td>23.79</td>
</tr>
<tr>
<td>P7524</td>
<td>36.0</td>
<td>21.98</td>
</tr>
<tr>
<td>X85R216</td>
<td>36.5</td>
<td>15.84</td>
</tr>
<tr>
<td>P8192</td>
<td>42.4</td>
<td>15.37</td>
</tr>
<tr>
<td>P8805</td>
<td>32.6</td>
<td>21.98</td>
</tr>
<tr>
<td>P8284</td>
<td>29.2</td>
<td>20.63</td>
</tr>
<tr>
<td>P7631</td>
<td>37.2</td>
<td>19.85</td>
</tr>
<tr>
<td>X80A430</td>
<td>37.9</td>
<td>19.01</td>
</tr>
<tr>
<td>Average</td>
<td>35.7</td>
<td>22.2</td>
</tr>
</tbody>
</table>

McKendry, Phil

Location: ASHBURTON
Planting Date: 23/10/2013
Harvest Date: 24/04/2014
Days from planting to harvest: 182
Trial Altitude: 256 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39G12</td>
<td>41.8</td>
<td>15.84</td>
</tr>
<tr>
<td>X85R216</td>
<td>36.5</td>
<td>15.74</td>
</tr>
<tr>
<td>P8192</td>
<td>42.4</td>
<td>15.37</td>
</tr>
<tr>
<td>P7709</td>
<td>44.8</td>
<td>15.27</td>
</tr>
<tr>
<td>P7524</td>
<td>41.6</td>
<td>15.24</td>
</tr>
<tr>
<td>X80A430</td>
<td>45.2</td>
<td>14.18</td>
</tr>
<tr>
<td>39V43</td>
<td>37.2</td>
<td>14.10</td>
</tr>
<tr>
<td>Average</td>
<td>41.3</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Molloy, Lynton

Location: ASHBURTON
Planting Date: 19/10/2013
Harvest Date: 26/04/2014
Days from planting to harvest: 189
Trial Altitude: 48 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38H20</td>
<td>40.4</td>
<td>25.18</td>
</tr>
<tr>
<td>38V12</td>
<td>40.7</td>
<td>24.16</td>
</tr>
<tr>
<td>X85C385</td>
<td>43.2</td>
<td>23.17</td>
</tr>
<tr>
<td>X90B216</td>
<td>43.3</td>
<td>23.08</td>
</tr>
<tr>
<td>X90B153</td>
<td>45.2</td>
<td>22.92</td>
</tr>
<tr>
<td>X90C526</td>
<td>43.6</td>
<td>22.86</td>
</tr>
<tr>
<td>P8805</td>
<td>40.1</td>
<td>22.07</td>
</tr>
<tr>
<td>P9175</td>
<td>35.4</td>
<td>21.15</td>
</tr>
<tr>
<td>Average</td>
<td>41.5</td>
<td>23.1</td>
</tr>
</tbody>
</table>

Morrison, Nigel

Location: LINKWATER
Planting Date: 30/10/2013
Harvest Date: 29/03/2014
Days from planting to harvest: 150
Trial Altitude: 5 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8644</td>
<td>36.4</td>
<td>32.23</td>
</tr>
<tr>
<td>X85C385</td>
<td>36.5</td>
<td>30.86</td>
</tr>
<tr>
<td>38H20</td>
<td>34.9</td>
<td>30.63</td>
</tr>
<tr>
<td>X90B216</td>
<td>36.3</td>
<td>30.33</td>
</tr>
<tr>
<td>X90B153</td>
<td>37.6</td>
<td>30.23</td>
</tr>
<tr>
<td>P8805</td>
<td>38.6</td>
<td>28.79</td>
</tr>
<tr>
<td>38V12</td>
<td>35.1</td>
<td>28.48</td>
</tr>
<tr>
<td>X90C526</td>
<td>33.5</td>
<td>28.08</td>
</tr>
<tr>
<td>Average</td>
<td>36.1</td>
<td>30.0</td>
</tr>
</tbody>
</table>
Van Leeuwin, Aad

Location: MORVEN
Planting Date: 6/11/2013
Harvest Date: 7/05/2014
Days from planting to harvest: 182
Trial Altitude: 189 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39G12</td>
<td>32.7</td>
<td>16.64</td>
</tr>
<tr>
<td>P8192</td>
<td>34.3</td>
<td>16.30</td>
</tr>
<tr>
<td>39V43</td>
<td>34.3</td>
<td>15.75</td>
</tr>
<tr>
<td>P7524</td>
<td>32.2</td>
<td>15.43</td>
</tr>
<tr>
<td>P8000</td>
<td>27.2</td>
<td>15.10</td>
</tr>
<tr>
<td>P7631</td>
<td>30.7</td>
<td>14.37</td>
</tr>
<tr>
<td>X80A430</td>
<td>31.0</td>
<td>13.28</td>
</tr>
<tr>
<td>P7709</td>
<td>29.8</td>
<td>12.97</td>
</tr>
<tr>
<td>Average</td>
<td>31.5</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Wai-iti Fresh (Peter McCracken) - Trial 1

Location: SWANNANOA
Planting Date: 31/10/2013
Harvest Date: 5/05/2014
Days from planting to harvest: 186
Trial Altitude: 43 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38V12</td>
<td>37.8</td>
<td>24.07</td>
</tr>
<tr>
<td>X90B216</td>
<td>37.8</td>
<td>22.61</td>
</tr>
<tr>
<td>X85C384</td>
<td>39.9</td>
<td>22.28</td>
</tr>
<tr>
<td>X85B084</td>
<td>36.5</td>
<td>21.87</td>
</tr>
<tr>
<td>P8589</td>
<td>37.2</td>
<td>21.07</td>
</tr>
<tr>
<td>X90B153</td>
<td>40.9</td>
<td>20.66</td>
</tr>
<tr>
<td>X85G038</td>
<td>34.3</td>
<td>20.62</td>
</tr>
<tr>
<td>39T45</td>
<td>39.3</td>
<td>20.16</td>
</tr>
<tr>
<td>Average</td>
<td>38.0</td>
<td>21.7</td>
</tr>
</tbody>
</table>

Yeatman Farms - Trial 1

Location: ASHBURTON
Planting Date: 24/10/2013
Harvest Date: 24/04/2014
Days from planting to harvest: 182
Trial Altitude: 38 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X85C384</td>
<td>38.9</td>
<td>19.58</td>
</tr>
<tr>
<td>38H20</td>
<td>41.2</td>
<td>18.94</td>
</tr>
<tr>
<td>X85C385</td>
<td>41.2</td>
<td>17.80</td>
</tr>
<tr>
<td>P8805</td>
<td>41.9</td>
<td>17.66</td>
</tr>
<tr>
<td>P8589</td>
<td>40.8</td>
<td>16.76</td>
</tr>
<tr>
<td>P9175</td>
<td>39.0</td>
<td>16.74</td>
</tr>
<tr>
<td>38V12</td>
<td>38.4</td>
<td>16.05</td>
</tr>
<tr>
<td>X90B153</td>
<td>36.8</td>
<td>15.87</td>
</tr>
<tr>
<td>X85R216</td>
<td>36.2</td>
<td>14.68</td>
</tr>
<tr>
<td>X90C526</td>
<td>34.0</td>
<td>14.41</td>
</tr>
<tr>
<td>X85B084</td>
<td>37.8</td>
<td>13.48</td>
</tr>
<tr>
<td>Average</td>
<td>38.7</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Wai-iti Fresh (Peter McCracken) - Trial 2

Location: SWANNANOA
Planting Date: 31/10/2013
Harvest Date: 5/05/2014
Days from planting to harvest: 186
Trial Altitude: 43 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38V12</td>
<td>37.8</td>
<td>24.07</td>
</tr>
<tr>
<td>X90B216</td>
<td>37.8</td>
<td>22.61</td>
</tr>
<tr>
<td>X85C384</td>
<td>39.9</td>
<td>22.28</td>
</tr>
<tr>
<td>X85B084</td>
<td>36.5</td>
<td>21.87</td>
</tr>
<tr>
<td>P8589</td>
<td>37.2</td>
<td>21.07</td>
</tr>
<tr>
<td>X90B153</td>
<td>40.9</td>
<td>20.66</td>
</tr>
<tr>
<td>X85G038</td>
<td>34.3</td>
<td>20.62</td>
</tr>
<tr>
<td>39T45</td>
<td>39.3</td>
<td>20.16</td>
</tr>
<tr>
<td>Average</td>
<td>38.0</td>
<td>21.7</td>
</tr>
</tbody>
</table>

Yeatman Farms - Trial 2

Location: ASHBURTON
Planting Date: 24/10/2013
Harvest Date: 1/05/2014
Days from planting to harvest: 189
Trial Altitude: 38 metres

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Drymatter (%)</th>
<th>Yield (tDM/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X85C384</td>
<td>38.9</td>
<td>19.58</td>
</tr>
<tr>
<td>38H20</td>
<td>41.2</td>
<td>18.94</td>
</tr>
<tr>
<td>X85C385</td>
<td>41.2</td>
<td>17.80</td>
</tr>
<tr>
<td>X85C384</td>
<td>41.2</td>
<td>17.66</td>
</tr>
<tr>
<td>X85C384</td>
<td>41.2</td>
<td>17.66</td>
</tr>
<tr>
<td>X85C384</td>
<td>41.2</td>
<td>17.66</td>
</tr>
<tr>
<td>38V12</td>
<td>38.4</td>
<td>16.05</td>
</tr>
<tr>
<td>X90B153</td>
<td>36.8</td>
<td>15.87</td>
</tr>
<tr>
<td>X85R216</td>
<td>36.2</td>
<td>14.68</td>
</tr>
<tr>
<td>X90C526</td>
<td>34.0</td>
<td>14.41</td>
</tr>
<tr>
<td>X85B084</td>
<td>37.8</td>
<td>13.48</td>
</tr>
<tr>
<td>Average</td>
<td>38.7</td>
<td>16.5</td>
</tr>
</tbody>
</table>
THANK YOU TO THE 2013/2014 LOWER NORTH ISLAND, TARANAKI & SOUTH ISLAND TRIAL CO-OPERATORS

The results of the extensive research trial programme in this publication are only made possible with the willing assistance and co-operation of both farmers and contractors. Special thanks to all those involved with planting and harvesting silage and grain trials pictured and listed on the following pages.
Thank you

Dave Adams
Leeston

Jim Alpe
Martinborough

Chris Amon
Waverley

Allan Beck
Palmerston North

Ross Bolton
Egmont Village

Eddie Bourke
Manaia

Phillip & Stephen Brosnahan
Brosnahan Bros Ltd
Timaru

Allan Butler
Kaponga

Simon Campbell
Palmerston North
Thank you
Thank you

William Duncan
Dunrobin Farms
Palmerston North

Phil Gray
Five Star Beef Ltd
Martinborough

Martin Fleming
Mayfield

Peter Flintoft
Culverden

Alistair Geary
Patea

Bruce Gibbons
Palmerston North

Douglas Giles
Rongotea

Stewart Glasgow
Wanganui

Tom Goodin
Opunake
Thank you

Richard Kershaw
Martinborough

Peter Kingsbury
Ashburton

Bede Kissick
Auroa

Chris Knowles
Tariki

Brian Wilkinson
Landcorp Farming Ltd
Foxton

Zoe, Ashlyn & Tony Kuriger
Woodville

Paul Leadley
Ashburton

Craig Lynskey
Pihama

Harry Maijer
Oxford
Thank you
Thank you
Thank you
Thank you

Andrew Thomas
Elsthorpe

Chris Thompson
Woodville

Michael Train
Waverley

Sam Trotter
Marton

Bryan Tucker
Greytown

Aad van Leeuwen
Waimate

Peter McCracken
Wai-iti Fresh
Rangiora

Matthew Wall
Featherston

Greg Washer
Hawera

John Weir
Stratford
Thank you
Thank you

Thanks also go to those farmers in our trial co-operator programme whose photos were unavailable:

Karl Bunn
Chapman Onion Exports
Kristan Funnell
Ross & Gloria Moffitt